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Abstract 

Geometric uncertainty is unavoidable when programming robots for physical applications. We 
propose a stochastic framework for manipulation planning where plans are ranked on the basis 
of expected cost. That is, we express the desirability of states and actions with a cost function 
and describe uncertainty with probability distributions. We illustrate the approach with a new 
design for a programmable parts feeder, a mechanism that orients two-dimensional parts using 
a sequence of open-loop mechanical motions. We present a planning algorithm that accepts an 
η-sided polygonal part as input and, in time 0(n2), generates a stochastically optimal plan for 
orienting the part. 



Dedicated to the memory of my father and his vision of a robotic hoist. 

Most importantly, I thank my family, especially my mother, sisters, and grandparents for their 
consistent support, encouragement, and love through 29 years of learning. Over these years I was lucky 
to work with some excellent teachers: Theresa Ludwig, Doris Helms, Len Perrett, Peggy Ota, Ruzena 
Bajcsy, and Philip Rieff , who taught me that you only live once, if then. 

I owe a substantial debt to my advisor, Matt Mason, for his guidance and high standards. For his 
amazing tolerance of my artwork in the lab, his support and confidence in the ability of his students. His 
good humor fostered a strong sense of solidarity in our lab that made this work a pleasure. I also thank 
the other members of my thesis committee, Profs. Paul Wright of NYU, Rob Kass of CMU Statistics, 
and Takeo Kanade for their insightful questions and advice. 

For specific contributions to this thesis, I'd like to thank Alan Christiansen, Mike Erdmann, Merrick 
Furst, Klaus Gross, Kevin Lynch, Barak Pearlmutter, Harry Printz, Russ Taylor, and in particular Randy 
Brost for his boundless enthusiasm. 

I also greatly benefitted from discussions with the following colleagues: Srinivas Akella, Peter 
Allen, Dina Berkowitz, David Bourne, Johann Borenstein, Ben Brown, John Canny, Lin Chase, Peter 
Cheeseman, Bruce Donald, Morris DeGroot, Adele Goldberg, Jessica Hodgins, Katsushi Ikeuchi, Guy 
Jacobsen, Jeff Koechling, Eric Krotkov, Ehud Lenz, Larry Matthies, Gary Miller, Max Mintz, Bud 
Mishra, Hans Moravec, Mark Nagurka, Balas Natarajan, Shree Nayar, Irv Oppenheim, Mike Peshkin, 
Marc Raibert, Todd Rockoff, Dean Rubine, Moshe Shoham, Reid Simmons, Herb Simon, Dan Sleator, 
Rick Szeliski, Roy Taylor, Jeff Trinkle, Richard Wallace, Yu Wang, Larry Wasserman, Jon Webb, and 
Andy Witkin. 

If I had to do it over again I'd come back to Carnegie Mellon's School of Computer Science. Anyone 
who's spent any time here knows what I mean. Thanks to Nico Habermann for giving me a semester to 
visit the Technion. And to Mike Acceta, Sylvia Berry, Sharon Burks, Catherine Copetas, Edith Culmer, 
Jean Harpley, Maggie Muller, and Jim Skees for making everything around here run so smoothly. 

I thank my friends in Pittsburgh and those who attended the Logout Bashes. Chateau Wexford: 
Todd Rockoff and Klaus Gross, and especially Richard Wallace, who shared adventures both inside and 
outside of Wean Hall. And old friends G.C., D.C., E.C., K.B., C.Z., J.E., J.E., S.F., A.S., J.A., E.G., 
A.G., and B.C. 

I'd also like to thank Ram Nevada, Ari Requicha, George Bekey, Jerry Mendel, and Ellis Horowitz 
for inviting me to join the faculty at USC. But that's another story.... 

Ken Goldberg 
Pittsburgh, PA. 1990 



Contents 

Introduction 7 

1.1 Background 8 

1.1.1 Robotic Manipulation Planning 8 

1.1.2 Uncertainty 8 

1.1.3 Two Approaches to Coping with Uncertainty 9 

1.1.4 A Geometric Theory of Manipulation Planning 10 

1.1.5 Binary Metrics For Plans 11 

1.1.6 Real-Valued Metrics for Plans 12 

1.2 The Theory of Games and Decisions 13 

1.2.1 Estimation and Sensor Planning 13 

1.3 This Thesis 14 

1.3.1 Relation between Sensing and Acting 15 

1.4 Other Work 16 

1.4.1 Active Sensing 16 

1.4.2 Domain-Independent Planning in A.1 17 

1.4.3 Stochastic Optimal Control Theory 17 

1.4.4 Algorithmic Complexity Theory 17 

1.4.5 Statistical Decision Theory 18 

1.5 Overview of the Thesis 18 

2 



CONTENTS 3 

2 Stochastic Framework 20 

2.1 One-Step Plans 21 

2.2 Multi-Step Plans 22 

2.3 Iterative Plans 23 

2.4 Finding an Optimal Plan 24 

2.5 Discussion 25 

2.5.1 Planning with Perfect Information 25 

2.5.2 Relation to Decision Theory 26 

2.5.3 Guaranteed Plans as a Special Case 26 

2.5.4 Extension to Continuous State and Action Spaces 27 

3 Random Grasping with Friction 28 

3.1 Introduction 28 

3.2 Related Work 30 

3.2.1 Grasp Stability 30 

3.2.2 Grasp Mechanics 30 

3.3 Assumptions and Problem Definition 31 

3.3.1 Coordinate Frames 33 

3.4 Pushing and Squeezing Phases of Grasping 33 

3.5 Sources of Uncertainty in the Transfer Function 34 

3.6 Review of Brest's Method 34 

3.6.1 Analysis of Pushing Phase 35 

3.6.2 Analysis of Squeezing Phase 35 

3.7 Necessary Conditions to Guarantee a Stable Grasp 36 

3.7.1 Strong and Weak Pre-images of Θ, 37 

3.7.2 Upper Bound on Uncertainty in θ\ 37 

3.8 Stochastic Analysis 38 

3.9 Lower Bound on P(S) 38 

3.10 Examples of Lower Bound on P(S) 39 

3.11 The Frictionless Gripper 40 

3.12 Discussion 41 



CONTENTS 4 

4 Stochastically Optimal Parts Feeding 42 

4.1 Introduction 42 

4.2 Related Work 44 

4.3 Assumptions 45 

4.4 The Transfer Function 46 

4.4.1 The Diameter Function 46 

4.4.2 The Squeeze Function 47 

4.4.3 The State Space 48 

4.4.4 Prior Probability Distribution 49 

4.4.5 The Action Space and Transition Matrices 49 

4.4.6 The Cost Metric 51 

4.5 Definition of Stochastically Optimal Plan 52 

4.6 Theorem: Stochastically Optimal Plans are of Length 0(n) 52 

4.7 Problem Definition 53 

4.8 Implementation 53 

4.9 Discussion 55 

4.9.1 Randomizing to Justify Prior Probabilities 56 

4.9.2 Control Uncertainty 57 

4.9.3 Worst-Case Computational Complexity 57 

5 Backchaining Algorithm 58 

5.1 Introduction 58 

5.2 Related Work 58 

5.3 Assumptions and Problem Statement 60 

5.3.1 Images and Preimages 60 

5.4 The Algorithm 60 

5.4.1 Phase I 61 

5.4.2 Phase I Finds Geometrically Optimal Plans 64 

5.4.3 Orienting a Part up to Symmetry 66 

5.4.4 Plans as Funnels 67 



CONTENTS 5 

5.5 Phase Π 68 

5.6 Correctness 68 

5.7 Completeness 69 

5.8 Worst-Case Computational Complexity 70 

5.9 Implementation 71 

5.10 Discussion 71 

6 Empirical Model of Control Uncertainty 76 

6.1 Introduction 76 

6.2 The Domain: Tray-Tilting 77 

6.3 Developing a Stochastic Control Model from Observations 79 

6.3.1 Bayesian Estimation of Multinomial Parameters 79 

6.3.2 Physical Observations 83 

6.4 Finding Stochastically Optimal Plans 84 

6.5 Discussion 85 

7 Discussion and Future Work 87 

7.1 Limitations of Stochastic Planning 87 

7.1.1 "Probability and Cost Models are Ad-Hoc." 87 

7.1.2 "Stochastic Planning is Intractable." 88 

7.2 Future Work: Stochastic Plans with Sensors 89 

7.2.1 Sensor Data Transforms a Hyperstate 89 

7.2.2 Plans with Sensors 90 

7.2.3 Example: Sensing Gripper Diameter 90 

7.2.4 Plans with Sensors and Actions 93 

7.2.5 Planning with Sensors 93 

7.2.6 Related Work 94 

7.2.7 Other Applications 95 

7.3 Future Work: Other Cost Functions 96 

7.4 Conclusions 97 



CONTENTS 6 

A Overview of Statistical Decision Theory 98 

Β The Frictionless Gripper 101 

B.l Background 101 

B.2 The Invention 103 

C Towards a Tighter Lower Bound on P(S) 105 

C.l Examples 108 

D The Diameter Function 110 

D.l Diameter as a Potential Function I l l 

D.2 A Cost Metric Related to The Diameter Function 112 

Ε Push-Grasping 113 

E.l The Transfer Function 114 

E.l.l The Radius Function 114 

E.1.2 The Push Function 114 

E.1.3 The Push-Grasp Function 114 

E.2 Planning 115 

F Planning with Non-Uniform Priors 122 

G The Dirichlet Distribution 125 

Η Notation 128 



Chapter 1 

Introduction 

Geometric uncertainty is unavoidable when programming robots for physical applications. 
Consider programming a robot to pick up parts on an assembly line. Each time a part arrives, 
its initial position and orientation relative to the robot will be slightly different. Yet we desire a 
sequence of commands - a plan - that will achieve a desired outcome. Can we find a plan that 
will work every time? Or at least, most of the time? 

To address such questions, a geometric theory of manipulation planning in the presence 
of uncertainty was outlined by Lozano-Perez, Mason, and Taylor [1984] and extended in a 
series of papers over the past six years. In this approach, robot actions correspond to mappings 
on a state (configuration) space. To express uncertainty, both the initial conditions and the 
desired outcome (the goal) are represented as subsets of state space such that the true state of 
the physical system corresponds to a single element of the current set. A plan that defines a 
mapping from the initial set into the goal set is guaranteed to succeed. 

This approach makes a binary distinction between plans that are guaranteed and plans that 
are not guaranteed. This may be overly conservative in factory applications where plans will 
be executed many times and occasional failure is tolerable. For cases where a guaranteed plan 
doesn't exist, we need a way to choose between plans that are not guaranteed. And for cases 
where more than one guaranteed plan exists, we need a way to choose between guaranteed 
plans. In short, we need a formalism for ranking plans. 

If we treat plans as strategies, the theory of games and decisions provides such a formalism. 
Plans can be ranked by expected performance based on a posterior probability distribution and a 
cost function that relates states to performance. This thesis suggests a stochastic framework for 
manipulation planning and demonstrates how cost and probability models can be justified either 
(i) by analyzing system geometry or (ii) through empirical observations. This thesis, together 
with the independent work of Mike Erdmann [1989], provides a link between well-established 
methods in statistics and ongoing work in the theory of robot manipulation. 
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1.1 Background 

In the paper, Sensor-Based Manipulation Planning as a Game With Nature, Taylor, Mason, 
and Goldberg [1987], suggested an approach to manipulation planning where sensor data 
and actions are treated in a common framework: both are viewed as constraints on the set of 
possible system configurations (states). Erdmann [1989] focussed on probabilistic extensions 
of this framework, in particular the use of randomization in planning. This thesis focusses on 
tradeoffs between a plan's cost and its probability of success. 

In this section we review the history of robotic manipulation planning in the presence of 
uncertainty and describe the progression of ideas that led to the current thesis topic. 

1.1.1 Robotic Manipulation Planning 

We refer to a robot command as an action, noting that the exact outcome of an action may be 
impossible to predict. We refer to a sequence of actions as a plan. Planning is the process of 
finding a plan to achieve a desired outcome. An example is path planning, where the objective 
is to find a sequence of actions that will move the robot from point A to point Β without 
crashing into obstacles along the way [Schwartz et al., 1987]. In manipulation planning, the 
objective is to find a sequence of actions to move a. part from state A to state Β using mechanical 
interactions between the robot and the part. 

1.1.2 Uncertainty 

Anyone who has tried to program a real robot for manipulation is aware of the problem of 
uncertainty. Given an ideal system of masses and forces, we can in principle predict the 
resulting motions using Newtonian mechanics. In practice however, we cannot predict the 
exact position and orientation of the part we want to manipulate. Also, we cannot predict the 
exact forces that will act on the part. 

Friction, for example, is a common source of uncertainty. Consider programming a robot 
to push a box across a table. When the box is pushed, the reaction torque depends on the 
box's support distribution, which in turn depends on the microscopic interface between the 
box and the table [Mason, 1982]. As the box is pushed, the interface changes. There is also 
a discontinuity between static and dynamic coefficients of friction. Since these quantities are 
essentially impossible to predict, we cannot predict the exact motion of the box. 
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1.1.3 Two Approaches to Coping with Uncertainty 

When we don't know the state of a system, one approach is to sense the state, for example with 
a visual or tactile sensor. Transforming noisy sensor data into constraints in the state of the 
system depends on many factors, such as the noise and resolution of the sensor. There is a vast 
body of literature on methods for processing sensor data. 

A more subtle approach to coping with uncertainty is to constrain the state with mechanical 
compliance, for example by sweeping the robot arm across the table to "scoop up" a block 
prior to grasping [Inoue, 1974, Mason, 1978]. Another example is the common method for 
calibrating X-Y plotters. When powered up, the initial position of the pen is unknown. The 
first step is to drive the pen along the X axis for a few seconds and then along the Υ axis for a 
few seconds. This open-loop strategy drives the pen into a known position (the corner) from 
which subsequent motions are measured. Open-loop actions are also referred to as sensor-less 
actions [Erdmann and Mason, 1986] or generalized funnels [Brost, 1990]. 

This thesis focusses on the class of open-loop plans, where execution proceeds without 
sensors. An example is shown in Figure 1.1. Since open-loop plans require no sensing and 
minimal on-line computation, they can be less expensive to implement than sensor strategies. 

Figure 1.1: Four traces of a two-step plan for orienting a rectan­
gular part using the frictionless parallel-jaw gripper. Each trace 
runs from top to bottom showing the orientation of both gripper 
and part after each squeeze action. Although the part's initial 
orientation is different in each trace, its final orientation is the 
same. Note that gripper motion for each case is the same. The 
plan is open-loop: it does not depend on sensor data. 
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1.1.4 A Geometric Theory of Manipulation Planning 

We believe that [the geometric theory of manipulation] is the cleanest and most rig­
orous approach to motion planning with uncertainty proposed so far, and that, despite 
some theoretical difficulties, it will have a major impact in the future. [Latombe, 
1989] 

A geometric theory of manipulation planning in the presence of uncertainty was outlined 
by Lozano-Perez, Mason, and Taylor [1984]. This theory has been explored over the past 
six years; see Latombe [1989] and Donald [1990] for reviews. The fundamental idea is that 
manipulation planning can be transformed into a geometric problem in a state (configuration) 
space, where robot actions correspond to mappings and mechanical properties such as stability, 
friction, and kinematic constraints are related to geometric conditions. 

To express uncertainty, both the initial conditions and the desired outcome (the goal) are 
represented as subsets of state space such that the true state of the physical system corresponds 
to a single element of the current set. A plan that defines a mapping from the initial set into 
the goal set is guaranteed to succeed. Such a plan is called a guaranteed plan (also called a 
fine-motion plan [Lozano-Perez, Mason, and Taylor , 1984]). 

Preimage Backchaining 

One way to find a plan is to work backward from the goal set. This method for finding 
manipulation plans is called the preimage backchaining method. Lozano-Perez, Mason, and 
Taylor [1984] used the peg-in-hole problem as an example, where peg velocity can only be 
controlled to within a worst-case error cone. Uncertainty can be reduced using compliant 
motion where robot motion complies to the geometry of the environment. By projecting the 
velocity error cone backward from the goal, a geometrical region from which the motion is 
guaranteed to succeed - a strong pre-image - can be identified. The strong pre-image then 
becomes the goal for another motion. We can prove that a multi-step plan is guaranteed to reach 
the goal set using pre-images as pre-conditions in a Hoare-style logic. The approach bears some 
resemblance to dynamic programming [Bertsekas, 1987], where one finds an optimal plan by 
working backward from a desired outcome. 

The correctness and completeness of the backchaining method was studied by Mason [1984]. 
Erdmann [1984] addressed computability issues and proposed a restricted class of computable 
pre-images. Natarajan [1986] and Canny [1987] analyzed the computational complexity of 
planning under this theory. Buckley [1986] implemented a motion planner based on the theory. 
Donald [1987] noted that guaranteed plans do not always exist and proposed a class of plans 
that fail gracefully. Brost [1988] used pre-images to find one-step grasping actions that are 
guaranteed to be stable. 
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Planning as a Game with Nature 

Erdm arm and Mason [1986] proposed the class of tray-tilting actions, where an object is oriented 
by tilting a four-sided tray. An action is specified by a tilting angle. They used pre-images to 
generate a sequence of open-loop tilting actions guaranteed to orient a part. They noted that 
searching forward for a guaranteed plan can be viewed as searching through a tree, where each 
node in the tree corresponds to a set of possible states. Actions define links between nodes. A 
guaranteed open-loop plan corresponds to a path from the root node (containing the initial set 
of states) to a node containing a single goal state. 

This approached was generalized to include finite sensors (where the set of possible sensor 
values is finite) in Buckley [1986], Taylor, Mason, and Goldberg [1987] and Mason, Goldberg, 
and Taylor [1988]. With sensors, the tree is an And/Or tree where each sensor-outcome defines 
an AND-link between nodes. A guaranteed plan is a subtree where each sensor link leads to a 
goal node. Taylor, Mason and Goldberg noted that planning in this framework could be viewed 
as searching for a strategy in a game against nature, where a guaranteed plan includes subplans 
for all combinations of sensor data. 

1.1.5 Binary Metrics For Plans 

The emphasis on guaranteed plans amounts to a binary metric that classifies plans as either 
guaranteed or not guaranteed. This metric relies on a worst-case analysis that implicitly uses 
binary models of uncertainty and cost. 

This binary model of uncertainty is related to the approach used in mechanical design, 
where worst-case tolerance margins are specified for each component such that performance 
is guaranteed when these tolerances are maintained [Requicha, 1983, Lange, 1984]. Taylor 
[1976] developed a plan checker that propagates numerical tolerances through a multi-step 
assembly plan. Brooks [1982] extended Taylor's approach to handle symbolic tolerances and 
showed that backward propagation can be used to give initial tolerances that will guaranteed 
a desired set of final tolerances. Hutchinson and Kak [1990] developed an assembly planning 
system that propagates tolerance margins. To identify guaranteed plans, the geometric theory of 
manipulation identifies a subset of state space that encloses all possible states that the physical 
system can be in. The complement of this subset is the set of states that the physical system 
cannot be in. This constitutes a binary model of uncertainty. 

Under the geometric theory of manipulation, we identify a subset of state space that we label 
the goal set. All states included in this goal set are acceptable, and all other states are not. In 
the terminology of utility theory, this is a binary cost function. 

Combining a binary model of uncertainty with a binary model of cost, we can identify plans 
such that even with worst-case uncertainty, the final state will be classified as a goal state. Such 
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plans are guaranteed to succeed. All plans that do not meet this criterion are lumped together 
as plans that are not guaranteed to succeed. 

This binary metric for plans presents two fundamental limitations. 

1. "It is simply not always possible to find plans that are guaranteed to succeed" [Donald, 
1987]. The initial subset of state space may be such that no sequence of available 
commands can map it into the goal set. In such cases there is no way to choose among 
plans because all plans are equal under the binary metric. 

2. A guaranteed plan may be extremely costly in terms of time or resources. With the binary 
metric, all guaranteed plans are equal; there is no way to compare the cost of plans. 

In response to the first limitation, Donald proposed the class of Error Detection and Recov­
ery (EDR) plans. EDR plans are allowed to fail, but must fail recognizably. Donald formalized 
geometric conditions for recognizing failure and developed methods for recovering once failure 
is detected. Donald's formalism for addressing failure greatly expands the scope of the geo­
metric theory of planning. However this formalism still relies on binary models of uncertainty 
and cost - an EDR plan is guaranteed to either succeed or fail recognizably. 

1.1.6 Real-Valued Metrics for Plans 

Another approach to cases where a guaranteed plan does not exists is to use randomized plans. 
In his thesis, Erdmann [1989] explored many cases where randomization can be useful for 
robot planning. For example, in order to mesh two gears together, it may be far more efficient 
to randomly jiggle the gears until they mesh rather than trying to precisely align and mate 
them. Erdmann noted that as long as a randomized plan has nonzero probability of success, 
then by iterating the plan until it succeeds, we can say that the iterative plan will succeed with 
probability one. 

To analyze the probability that a plan will succeed, we need a probabilistic model of 
uncertainty. This is a real-valued version of the binary model of uncertainty; instead of 
classifying states as possible or impossible, we can express degrees of likelihood. Probabilistic 
models are often used to describe uncertainty in mechanical systems. 

"No matter how many times we flip a coin and observe the outcome, we are unable to 
predict exactly the outcome of the next flip. The reasons for our inability to predict 
are varied: we may not know all of the causal forces at work; we may not have 
enough data about the initial conditions in the problem; the forces at work may be 
so complicated that a calculation of their combined effect is not feasible; or there 
actually may be some basic indeterminacy at work in the problem at hand. We shall 
call such unpredictable phenomena random phenomena." [Davenport, 1970] 
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Probability theory offers well-established methods for estimating the expected behavior of 
unpredictable phenomena. 

The second limitation of the guaranteed plan metric, concerning the cost of plans, is ad­
dressed by introducing a cost metric on actions. We might associate a temporal cost with each 
action and search for the fastest plan. Similarly, we can introduce a cost metric on final states; 
rather than the binary distinction between goal and non-goal, we can relate cost to a real-valued 
distance metric. This is often appropriate in the context of robot planning, for example we want 
to move a block to location Θ. If there is too much uncertainty to guarantee location Θ, we'd 
like to get the block as close to θ as possible. We can capture this naturally by relating the cost 
of the outcome to the distance from the goal. We can use this measure of success to formalize 
the idea of "failing gracefully"; instead of thinking only in terms of success or failure, we can 
indicate degrees of success. 

By assigning a scalar cost function to actions, we can allow tradeoffs between effort and 
outcome. For example, we can compare a fast plan that comes within a foot of the goal with a 
slower plan that comes within an inch. This also allows us to define tradeoffs between multiple 
goals. 

Cost and probability metrics for plans address two of the limitations of the binary metric, 
but how do we combine cost and probability? Intuition suggests that there is a tradeoff between 
cost and the probability of success. For example, the null plan — do nothing - is inexpensive 
but may be unlikely to achieve a desired state. An approach to combining cost and probability 
metrics into a single real-valued metric for plans can be found in the theory of games and 
decisions. 

1.2 The Theory of Games and Decisions 

The problem of choosing among strategies appears in many contexts: e.g. game theory, decision 
theory, and control theory. A cost function (payoff matrix, loss function, performance index) is 
used to rank outcomes. Cost is simply negative utility. Decision theory ranks strategies on the 
basis of average performance, where the average is based on a probability distribution over the 
state space. Bayesian decision theory refers to approaches where the probability distribution is 
based on a priori information [Berger, 1985]. These theories have been applied to problems in 
robot sensing. 

1.2.1 Estimation and Sensor Planning 

Probabilistic techniques have been applied to problems in robot vision and navigation with good 

results. Optimal estimation has a long history going back to the least-squares and maximum-
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likelihood estimators ([Gauss, 1809] and [Fisher, 1912]); see Gelb [1986] for an overview. 
For robot navigation, Smith and Cheeseman [1986] and Ayache and Faugeras [1987] applied 
a maximum likelihood estimator to propagate first and second moments using a sequence of 
noisy observations. 

Bayesian decision theory has been successfully applied to problems in robot sensing. 
Durrant-Whyte [1988] used it to develop a unified approach to combining and transform­
ing uncertain geometric models. Hager [1988] applied both Minimax and Bayesian decision 
theory to a general class of sensor fusion problems. Given a class of part models, a prior 
distribution, sensor models, noise models and a utility function, an optimal sensing strategy 
can be defined. When computing the posterior distribution from a single observation, Hager 
showed that minimum mean squared error estimation is not robust to variations in a non-linear 
sensor model. He then developed a finite-element implementation of Bayes' theorem that is 
computationally expensive but suited to parallel implementation. One application is estimating 
the width and orientation of a rectangular part with a mobile camera. Time cost is attached to 
each observation and the strategy terminates when the expected gain from the next (optimal) 
observation falls below a predetermined threshold. See also Hager and Mintz [1989]. 

Szeliski [1988] has applied Bayesian decision theory to low-level vision, using a Markov 
Random Field to capture smoothness constraints in array of depth estimates. He considered 
a variety of loss (energy) functions based on surface models. Matthies, Szeliski, and Kanade 
[1987] developed a generalization of the Kalman filter for incrementally updating dense esti­
mates and used it to extract depth estimates from a mobile camera. Other Bayesian approaches 
to sensor noise can be found in papers by Bolle and Cooper [1986], Matthies and Shafer [1987], 
Buckley [1988], Moravec [1988] and Cameron and Durrant-Whyte [1989]. 

Decision theory has also been used to generate stochastically optimal image-processing 
strategies for determining part orientation based on visual data [Hong, Ikeuchi, and Gremban, 
1990]. The set of possible initial orientations can be split different ways using alternative visual 
operators, each with an associated cost. The authors search for a sequence of operators that 
will determine the final orientation in minimal expected time, where the expectation is based 
on a uniform probability distribution. 

1.3 This Thesis 

The connection between decision theory and robot sensing brings us full circle, back to uncer­
tainty. Our review began by identifying two approaches to coping with uncertainty: sensing 
and mechanical compliance. We described an existing geometric approach to the latter and 
noted two limitations due to the binary metric for plans. The binary metric arises from a binary 
model of uncertainty and a binary model of cost. This led us to consider the theory of games and 
decisions which combines utility and probability to produce a real-valued metric for choosing 
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among strategies. It turns out that decision theory has been successfully applied to planning 
with sensors, and so it is natural to apply this theory to planning open-loop actions. 

1.3.1 Relation between Sensing and Acting 

When uncertainty is represented with a probability distribution on the state space, sensors and 
actions both have the effect of transforming the probability distribution. 

Figure 1.2: A sensor reading provides a mapping from one 
probability distribution to another. 

Consider a block lying on a table where the position of the block is uncertain. Say we know 
that the block is in one of 4 positions, as shown with four "virtual" blocks in the upper left of 
Figure 1.2. Let each of the four positions have associated probabilities as shown in at the left.. 

Sensing changes the probability distribution. For example consider a camera that returns 
some noisy image v, as shown with dotted lines, that implies that the block is more likely to 
be to the right. Given a probabilistic model of the camera, the new probability distribution (as 
specified by Β ayes' Law) might be the one shown at the right of Figure 1.2. 

Now consider the same situation as before, but instead of sensing with a camera, a robot 
gripper reaches down over the set of virtual blocks and closes without sensing as shown in 
Figure 1.3. The action has the effect of "scooping up" two of the virtual blocks so that the 
block is more likely to be at the right. The resulting probability distribution shows the effect of 
adding the appropriate probabilities. Thus the open-loop action also has the effect of changing 
the probability distribution. 
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Figure 1.3: Similarly, an open-loop action provides a mapping 
from one probability distribution to another. 

Both sensing and open-loop actions can be used to reduce uncertainty in a system. Viewed 
in terms of probability, both have the effect of transforming a probability distribution on the 
state space. Stochastic approaches have been useful for planning sensing strategies. This thesis 
explores the idea that a stochastic approach can be useful for planning open-loop strategies. 

1.4 Other Work 

In this section we describe several other areas of research that are relevant to the subject of 
stochastic planning. 

1.4.1 Active Sensing 

Bajcsy et al. [1989] used the term active sensing to refer to systems where sensors are servoed 
so as to acquire data in an efficient manner [Allen, 1987, Stansfield, 1987] Examples are data-
driven exploratory motions, such as contour following [Goldberg and Bajcsy, 1984]. Koutsou 
[1988] used aparallel-jaw gripper equipped with force and tactile sensors to explore the weight, 
hardness, and shape of unknown parts. 

This approach requires that the next sensor probe be chosen based on current data. In a 
factory environment where plans will be repeated many times, it may be worthwhile to generate 
an optimal sensor plan off-line. We discuss a stochastic approach to sensor planning in chapter 
7. 
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1.4.2 Domain-Independent Planning in A.I. 

Planning is also studied outside the geometric context of robotics. Feldman and Sproull [1977] 
published an early article on planning that advocated the use of decision theory with numerical 
models rather than the purely symbolic (logical) techniques that still dominate most work 
in domain-independent planning [Genesereth and Nilsson, 1987]. Cheeseman [1985] argues 
that probability theory subsumes many recent approaches to uncertainty in the AI literature. 
Stochastic approaches to domain-independent planning have been described in [Russell and 
Wefald, 1988, Pearl, 1988, Drummond and Bresina, 1990, Hansson etal., 1990], 

1.4.3 Stochastic Optimal Control Theory 

Strategies that optimize an expected performance criterion are encountered in stochastic optimal 
control theory [Stengel, 1986, Bertsekas, 1987] where low-level systems are described by a set 
of continuous differential equations. Stochastic optimal control theory treats state uncertainty 
as additive noise, often Gaussian, as in the well-studied class of L-Q-G problems (Linear 
system, Quadratic loss function, Gaussian noise). 

1.4.4 Algorithmic Complexity Theory 

Robot plans can be viewed as algorithms. Recall that guaranteed plans do not always exist 
and when they do, they may be extremely costly. Searching for guaranteed plans is related 
to a worst-case analysis of algorithms. The worst-case analysis proceeds by imagining "an 
infinitely intelligent adversary who knows the structure of the algorithm and chooses inputs that 
will embarrass it to the maximal extent" [Karp, 1986]. Algorithms with acceptable worst-case 
performance, when they exist, may be inefficient for average-case problems. 

Stochastic plans are related to algorithms with good average-case performance. An example 
of such a probably-fast algorithm is the widely-used Simplex algorithm for linear programming 
that requires exponential time to solve pathological problems but requires only quadratic time 
for "average" problems. 

Stochastic plans are also related to fast algorithms that are allowed to fail with some small 
probability, known as probably-correct, or Monte Carlo algorithms. Perhaps best known is 
Rabin's probably-correct algorithm to test primality [Rabin, 1980]. 

Probabilistic algorithms have received a good amount of attention in the recent literature 
[Brassard and Bratley, 1988]. Average-case analysis is sometimes criticized on the grounds that 
its prior models are unrealistic. One response is to inject randomness into an algorithm to justify 
a probabilistic analysis. For example, Quicksort uses randomized pivots so the average-case 
running time is O(nlogn) regardless of the distribution of inputs [Knuth, 1973]. In Chapter 
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4 we choose a grasp angle at random to justify a probabilistic analysis of stochastic grasping 
plans. 

1.4.5 Statistical Decision Theory 

Robot plans can be viewed as decision procedures. The branch of statistics known as decision 
theory is concerned with finding decision procedures that are statistically optimal with respect 
to a given cost measure. To decide between two competing processes for etching integrated 
circuits, for example, we could compare them on the basis of expected cost per functioning 
chip. In decision theory there are three approaches to choosing an optimal strategy: 

1. The classical approach looks for a strategy that is superior to all other strategies for all 
inputs. For many problems, such a strategy does not exist. 

2. The minimax approach looks for a strategy that minimizes worst-case performance. This 
approach is conservative: "the one situation where this is clearly appropriate is when 
the [input] is determined by an intelligent opponent who desires to maximize your loss" 
[Berger, 1985, p.308]. Minimax approaches are particularly relevant in game-playing 
situations. 

3. The Bayesian approach looks for a strategy that minimizes average-case performance 
where the average is based on a prior distribution. 

Guaranteed plans are related to minimax strategies in that both are evaluated on the basis 
of worst-case performance. One difference is that the minimax approach often uses a real-
valued cost function to measure worst-case performance. The guaranteed planning framework 
uses a binary success/fail metric so that there is no way rank plans with the same worst-case 
performance. That is, if two plans fail in the worst case, there is no basis for choosing the lesser 
evil. Stochastic planning is closely related to Bayesian decision theory in that both require 
a probabilistic model to evaluate average-case performance. See Appendix A for more on 
statistical decision theory. 

1.5 Overview of the Thesis 

In this chapter we introduced stochastic plans and reviewed related work. In Chapter 2 we 
formalize a framework for ranking plans and define optimal single- and multi-step plans. In 
Chapter 3 we introduce the problem of stable grasping with a parallel-jaw gripper and show 
that guaranteed plans do not exist when orientational uncertainty exceeds a well-defined bound. 
This motivates us to consider probabilistic models and the random grasp. We derive a lower 
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bound on the probability that a grasp is stable as a function of the coefficient of friction between 
the part and the gripper. Noting that this probability goes to one as the coefficient of friction 
goes to zero, we introduce the frictionless gripper. 

In Chapter 4 we focus on the issue of state uncertainty and consider multi-step plans for 
feeding polygonal parts. We use part geometry to rank plans on the basis of expected throughput 
and search for plans that are stochastically optimal. Chapter 5 introduces a fast backchaining 
algorithm for finding stochastically optimal parts-feeding plans. The algorithm leads to a proof 
that every polygonal part can be oriented up to symmetry. 

Chapter 6 explores the use of empirical estimation to model control uncertainty. We consider 
the problem of orienting a polygonal part by tilting it in a tray through a sequence of angles. 
Control uncertainty arises from several sources including friction and impact, making it difficult 
to analytically model the trajectory of the part. We show how a Bayesian estimator can be 
used to build an empirical model based on physical experiments. We apply the framework of 
Chapter 2 to find stochastically optimal plans for orienting the part. In Chapter 7 we discuss 
some limitations to stochastic planning and show how the stochastic framework can be extended 
to incorporate sensors. 

Appendices A-H provide: an overview of statistical decision theory, a physical implemen­
tation for a frictionless gripper, a tighter lower bound on the probability that a random grasp is 
stable, an 0(n log n) algorithm for computing the diameter function, an algorithm for planning 
a sequence of push-grasp actions, a method for extending the backchaining algorithm to cases 
where the prior is non-uniform, examples of the Dirichlet distribution, and a list of notation. 



Chapter 2 

Stochastic Framework 

"How can we relax the restriction that plans must be guaranteed to succeed, and still 
retain a theory of planning that is not completely ad hoc!" [Donald, 1987]. 

In this chapter we propose a framework for planning open-loop robot manipulation sequences 
when there is uncertainty in state and control. The framework provides a formalism for ranking 
plans on the basis of cost and probability so that we can relax the restriction that plans must be 
guaranteed to succeed. The framework is based on well-established methods for the control of 
Markov processes [Howard, 1971, Dynkin and Yushkevich, 1979]. We focus on cases where 
the state and action spaces are finite and there is no observation of state during plan execution. 

In a physical manipulation problem we are uncertain about the initial state of the system. 
We have a set of actions to choose from, however we are uncertain about the effect of these 
actions. Given a desired final state, what is an optimal sequence of actions to perform? 

Suppose we treat the state of a system as a random variable that changes after an action. 
The random variable that results from an action is determined by transition probabilities. The 
sequence of random variables is a stochastic process. If the probability distribution for each 
variable depends only on the action and previous variable, then the sequence is a Markov chain. 
A Markov chain can be controlled by the choice of actions. When we do not know the state of 
the system after each action, we say that the Markov chain is unobserved. 

When the following conditions are satisfied, a manipulation planning problem can be related 
to finding an optimal control policy for an unobserved Markov chain. 

1. The set of states is finite. 

2. We can describe the initial state of the system with a probability distribution. 

3. The set of actions is finite. 

20 



2.1. ONE-STEP PLANS 21 

4. We can describe the effect of an action with a conditional probability distribution that 
depends only on the current state. 

5. We can characterize the cost of actions and a preference among outcomes with a scalar 
cost function. 

6. We cannot sense the state of the system during execution of the plan. 

Conditions 1 and 3 require that the state and action spaces be finite. Since the state and action 
spaces for manipulation problems are often related to the continuous spaces of translations and 
rotations, we must partition these spaces into a finite collection of subsets. This can be done 
with an arbitrary uniform grid or preferably, with a partition that depends on the geometry and 
mechanics of the problem. 

We first consider one-step plans and then generalize to multi-step plans. 

2.1 One-Step Plans 

A one-step stochastic planning problem is a five-tuple (Θ, λ 0 , Λ, V, C), specified as follows. 

1. State Space, θ Ε Θ 

2. Prior Probability Distribution, λ 0 G Λ 

3. Action Space, α Ε Λ 

4. Set of Transfer Matrices, V 3 Pa : Α ι-* Λ 

5. Cost (Loss) Function, C : Λ χ Λ *-* 3? 

The state θ is a vector describing the system that we wish to manipulate, e.g. the position and 
orientation of an object. The finite set of states is the state space, Θ. Let η = |Θ |. 

The prior probability distribution expresses uncertainty about the initial state of the system. 
A discrete probability distribution is specified by assigning a real number to each state; let pi be 
the probability that the system is in state Qi. Let A refer to a vector of probabilities [p \, P2, • • -pn} 
such that pi > 0 for i = 1, ...,n, and 1 = £?_, pi. Following the terminology of adaptive 
control theory, we refer to a probability distribution on Θ as a hyperstate [Astrom, 1987]. Let 
λ 0 refer to the initial hyperstate and let Λ represent the set of all hyperstates. 

The action space is the finite set of actions that we can choose from. The effect of an action 
is expressed with a stochastic transition matrix, P, where pij is the probability that the system 
will be in state 6j after the action is applied to state θ{. Note that this probability depends only 
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on the current state and the applied action - this is known as the Markov property. The result 
of applying action ο to λ is given by post-multiplying λ by Pa, 

A' = \Pa. (2.1) 

Every action can be viewed as a mapping between hyperstates. This is a vector form of the 
equation 

Pifli\a)^YtP{9i)P{9i\9ua). (2.2) 

Of course optimality must be defined with respect to some measure of performance. A 
scalar cost function allows us to rank one-step plans by considering both the cost of the action 
and the cost (negative utility) of the outcome. We express preferences between outcomes with 
a cost function that measures the "distance" from a desired final state. For example, we can 
express a strong desire for a particular goal state with a binary cost function that assigns zero 
cost to the goal state and unit cost to all other states. 

The result of applying an action is a probability distribution on the set of states. Since 
the true final state is uncertain, we define the cost function on Λ, the set of hyperstates. We 
might assign a cost to individual states and define the cost of a hyperstate to be its average, 
or expected, cost. For example, when the objective is accuracy, the cost of a hyperstate could 
be related to its expected distance from a desired state. For succinctness, we combine the cost 
function for actions and the cost function for hyperstates into a single cost function. 

Given the 5-tuple, (Θ, λ 0, Λ, "Ρ, C), we want to find an optimal plan. To compare plans, we 
compare their costs. For a given initial hyperstate λο, the cost of executing action a would be 
C (α, λο Pa), that is, the cost of the action itself and the cost of its outcome. An optimal one-step 
plan, a*, is an action with minimal cost: 

a* = argmin C(a,A0Pa)• (2.3) 
Λ 

2.2 Multi-Step Plans 

In this section we extend the framework to plans with more than one action. A multi-step 
plan is a sequence of actions. Since we have no sensory information about the state of the 
system during the plan, the sequence of actions is fixed (open-loop). As in the one-step case, a 
multi-step stochastic planning problem is a five-tuple (Θ, λ 0 , *4, V, C), specified as follows. 

1. State Space, θ ζ Θ 

2. Prior Probability Distribution, A0 € Λ 
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3. Action Space, a £ Λ 

4. Set of Transition Matrices, V 3 Pa : Λ ι-» Λ 

5. Cost (Loss) Function, C : i x A i - > R 

The state space and prior probability distribution are the same as for one-step plans, but the 
space of plans is the set of all sequences of actions. Since the set of actions is finite, the set of 
plans is countable. 

The transition matrix for a plan is the product of the transition matrices of its actions. That 
is, for a plan ρ = < αϊ, α2, c3 >, the final hyperstate would be 

X'= XoPp = XoPalPa2Pai. (2.4) 

Each plan is a mapping between hyperstates. 

The cost function for multi-step plans is similar to that for one-step plans. To take into 
account the effort expended in performing apian, the cost is usually the sum cost of all actions 
in the sequence plus the cost of the final hyperstate. 

To compare plans, we compare their costs. For a given initial hyperstate λ 0, the cost of 
executing plan ρ would be C(/>, λ 0Ρρ), that is, the cost of the actions plus the cost of the final 
hyperstate. An optimal plan, />*, is a plan with minimal cost: 

/ = argmin C(p,\0Pp). (2.5) 
ρ 

2.3 Iterative Plans 

If at first you don't succeed, try try again. 

Often we want to achieve a desired outcome. In cases where we have a binary test that 
accepts a desired subset of final states and rejects all others, we can consider plans that loop 
until the system succeeds in passing the test. We call these iterative plans. If each iteration has 
some probability of being successful, the interactive plan will succeed with probability one. 

One way to test for success is with a binary sensor. An alternative method is to design a 
mechanical loop, for example a binary mechanical filter that causes parts to fall off a conveyor 
belt unless they are in a desired orientation. Parts that fall off are then recycled until they pass 
the filter. With this approach no sensors are required. 

How many iterations will the plan execute until success is achieved? Consider an iterative 
plan where the probability of achieving a desired state on any iteration is p. It is a well-known 
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result from probability that in a sequence of independent and identically distributed iterations, 
the expected number of iterations until the desired state is achieved is 

E{n) = pi + p(l - p)2 + p(l - p)23 + ... 

= p ( l + 2 ( l - p ) + 3 ( l - p ) 2 + ...) 

= PIP1 

= UP-

For example, when rolling an unbiased die, the probability of rolling a 3 is 1/6. On average 
it takes 6 independent rolls to observe a 3. This assumes that each iteration is independent, 
that is, there is no coupling between the state of one iteration and the next. We can justify this 
assumption by randomizing the state between iterations, perhaps by intentionally jumbling the 
part. By defining a cost function that is related to the expected number of iterations, we can 
define stochastically optimal iterative plans. This will be explored in Chapter 4. 

2.4 Finding an Optimal Plan 

Finding an optimal plan may require substantial computation. The brute force method is to 
compute the cost of every plan and choose one with minimal cost, breaking ties arbitrarily. 
In a manufacturing setting, the optimization is performed off-line allowing us to amortize 
computation time over hundreds of execution cycles. 

Figure 2.1: We can represent the set of open-loop plans with a 
tree. 

We can visualize the search for an optimal plan as a search through a tree or graph where 
each node represents a hyperstate. The root node represents the initial hyperstate. Each action 
provides a link to another hyperstate and so on. Every path in the tree corresponds to a plan. 
The cost of a plan depends on the path and its terminal node. 
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To find the best multi-step plan, we cannot consider all plans because plans can be of arbitrary 
length - there is a (countably) infinite number of plans to consider. If the cost function for 
states and actions is additive and bounded from below, we can bound the length of plans since 
after a certain point, the cost of an additional action will outweigh any possible improvement 
in the hyperstate. 

We could reduce planning time in many cases with a best-first branch-and-bound method 
as used by Hong, Dceuchi, and Gremban [1990], where we avoid expanding paths that can't 
possibly be better than the current best path. Under this method, we expand the last node 
in the best (cheapest) current path. We continue until we reach a leaf node (from which we 
can't improve the hyperstate) and continue searching until all incomplete paths are at least as 
expensive as the minimum cost to a leaf. The speedup over exhaustive search depends on the 
ordering of nodes and the worst-case running time is the same. This method is closely related 
to the well-known Alpha-Beta search method for searching game trees [Pearl, 1984]. 

There are some theoretical lower bounds on the worst-case computational complexity of 
finding an optimal control policy for an unobserved Markov chain. When system state is 
perfectly observed at each stage an optimal policy can be found in polynomial time by dynamic 
programming techniques [Bertsekas, 1987] or linear programming. For cases where the system 
state is only partially observed (in a known element of a partition) at each stage, the problem 
is PSPACE-Hard. For cases such as ours where the system state is unobserved at each stage, 
the problem can be shown to be NP'-Complete [Papadimitriou and Tsitsiklis, 1987], suggesting 
that an algorithm with good worst-case running time may not exist. See Section 7.1.2 for more 
on the cost of planning. 

2.5 Discussion 

In this section we describe how the framework in this chapter is related to planning with perfect 
information, Bayesian decision theory, and finding guaranteed plans. We also comment on the 
challenge of extending the framework to continuous state and action spaces. 

2.5.1 Planning with Perfect Information 

When we have perfect information— there is no uncertainty in state or control - the probabilities 
become degenerate. We can represent this in the same framework by treating the probability 
vector as a binary vector with a single one corresponding to the initial state. If we can perfectly 
predict the effect of an action, then its transition matrix will be binary. We refer to such actions 
as deterministic, since the next state is perfectly determined. In this case every plan is mapping 
between states and we want a plan that maps the initial state into a desired final state. Note that 
finding such apian may still be non-trivial. 



2.5. DISCUSSION 26 

2.5.2 Relation to Decision Theory 

The framework is related to Bayesian decision theory. Decision theory is concerned with the 
problem of making decisions, or choosing between alternative actions assuming that the action 
will have no effect on the state. 

The cost function is defined over each pair of states and actions - once we know the state, 
we can choose the best action. We are uncertain about the exact state but can treat it as a 
random variable. In this case we can use its probability distribution to calculate an expected 
cost for each action and choose the action that will maximize expected cost. An idea added 
by statistical decision theory is that we can make the action depend on the result of some 
statistical experiment, referred to as the data. Problems without this complication are referred 
to in statistical decision theory as no-data problems [Berger, 1985]. 

Bayesian decision theory says that we can combine a prior model of state with statistical 
data to determine a posterior model of state. Let θ refer to any state of nature from a set of 
possible states Θ and λ(χ\θ) be the probability of observing data χ given that the true state of 
the system is Θ. We use Bayes' Theorem to derive λ(θ\χ), the probability that the state is θ if 
we observe data x. Let a refer to an action from a set of possible actions A. Let C(a, θ ) be the 
cost associated with a particular combination of action and state. An optimal action, a*, is an 
action that minimizes expected cost: 

a* = argmin Τ Ο(α,θ) Χ(θ\χ). (2.6) 
α€Λ

 « 7 θ 

To compare the framework for planning open-loop manipulation plans with the Bayesian 
framework, consider a manipulation planning problem where the cost of a hyperstate is its 
expected cost, 

<7(α,λ) = Σ<7(α,0)λ(*|α), (2.7) 
βζ@ 

where λ(θ\α) is the probability of state θ given action a. Substituting (2.7) into (2.3), 

a* = argmin Τ Ο(α,θ) λ(θ\α). (2.8) 

Comparing equations (2.6) and (2.8) we see that the optimal action is similar in both cases. The 
difference is that the posterior distribution depends on the data in the decision theory problem 
and on the action in the manipulation planning problem. Jeffrey [1965] discusses how decision 
theory can be reformulated to include the effect of actions on the posterior distribution. 

2.5.3 Guaranteed Plans as a Special Case 

We can use the same framework to find guaranteed plans by letting the probability be uniformly 
distributed among all possible initial states and letting the transition matrices map the probability 
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evenly among all possible outcomes. If we define the cost function to be zero for goal states 
and infinity for all other states, and let the cost of actions be zero, then any plan with any chance 
of failure will have infinite cost. Any plan with zero cost is guaranteed to reach the goal. It 
may be the case that there is no plan with zero cost, in which case all plans have infinite cost 
and are equivalent. 

2.5.4 Extension to Continuous State and Action Spaces 

We assume that state and action spaces are discrete. The underlying state space may be 
continuous, but we use geometric methods to partition this space into a finite collection of 
subsets and assign a probability to each subset. 

Generalizing the framework to continuous spaces introduces a variety of measure-theoretic 
issues. For example for each action we must define a probability space including a countable 
set of events and a probability measure over this set of events. We must take care in denning 
conditional probabilities and the cost must be measurable function from the probability space 
into the real line [Bertsekas, 1987, Gray and Davisson, 1986]. Dynkin and Yushkevich [1979] 
extends the control framework to semi-continuous and Borel processes. 

In this chapter we specify a stochastic framework for manipulation planning based on 
the theory of Markov chains. We define a planning problem as a five-tuple consisting of a 
state space, prior probability distribution, action space, set of transfer matrices, and a cost 
function. Planning is accomplished by propagating probability distributions on the state space 
(hyperstates). For cases where plans either succeed or fail, we define iterative plans and propose 
that iterative plans be evaluated based on expected throughput, which in turn depends on the 
probability of success in a single iteration. The probability of success is based on a plan's final 
hyperstate. 

To be useful, the framework requires a good probability model. In the next chapter we give 
an example where a probability model can be derived from part geometry. 



Chapter 3 

Random Grasping with Friction 

Figure 3.1: Schematic of a parallel-jaw gripper. 

3.1 Introduction 

In this chapter we apply a stochastic model to a simple grasping problem where a desired 
outcome cannot be guaranteed. Consider a polygonal part and a parallel-jaw gripper as in 
Figure 3.1. The frictional coefficient between part and gripper is given. We want to find a 
single-step plan (an orientation for the gripper) such that the final grasp configuration is stable 
(where at least one edge of the part is aligned with the gripper). The catch is that the part's 
exact initial orientation cannot be predicted. 

28 
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Brest [1988] developed a geometric method to address this problem where uncertainty in 
part orientation is described with a tolerance interval (e.g. ±10°). This method finds gripper 
orientations that are guaranteed to produce a stable grasp configuration when the part's initial 
orientation is within the tolerance interval as in figure 3.2. Brest noted that if the tolerance 
interval is sufficiently large, then it may be impossible to guaranteed a stable grasp as in figure 
3.3. 

Figure 3.2: Top view of the parallel-jaw gripper grasping a part 
(shaded square). Small variations on the part's initial orientation 
are cancelled out during grasping so that the final orientation is 
guaranteed to be as shown on the right. 

Figure 3.3: In this case large variations in the part's initial 
orientation make it impossible to guaranteed the final orientation 
of the part. 

For such cases we extend Brest's method by treating part orientation as a random variable. 
We derive a lower bound on the probability that a random grasp will be stable. This lower 
bound is a function of part geometry and the coefficient of friction. We find that this lower 
bound goes to one as the coefficient of friction goes to zero, which suggests a modification to 
the parallel-jaw gripper that we call uiefrictionless gripper. 

In the next section we describe related research on the mechanics of manipulation. We 
then specify assumptions and define terms. In section 3.5 we show how control uncertainty 
arises from friction. In section 3.6 we review Brest's method and find an upper bound on the 
orientational uncertainty that can be tolerated in order to guarantee a stable grasp. When this 
upper bound is exceeded we cannot guarantee a stable grasp but we can find a lower bound on 
the probability that a grasp will be stable. In sections 3.8 and 3.9 we introduce a probabilistic 
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model of the initial state and use it to find a lower bound on P(S). the probability that a grasp 
will be stable. In section 3.10 we report this lower bound for a variety of pan shapes. 

3.2 Related Work 

There is a substantial literature on the subject of grasping. See Grupen et al. [1989] and 
Pertin-Troccaz [1989] for reviews. 

3.2.1 Grasp Stability 

The stability of a grasp configuration can be defined in several ways. Hanafusa and Asada 
[1977] defined a grasp configuration to be stable when a small deviation from the configuration 
produces restoring forces. They used a potential function to locate stable configurations for 
three spring-loaded frictionless point fingers surrounding a planar part. This idea was extended 
by Baker, Fortune, and Gross [1985], who showed that a stable three-fingered grasp for any 
η-sided polygon can be found in time O(nlogn) by finding the maximum inscribed circle. 
Jameson [1985] stated that a grasp has second-order stability if the part will return to an 
equilibrium position after a perturbation of its position with respect to the gripper. Nguyen 
[1989] generalized Hanafusa and Asada's potential function and showed that a stable grasp 
must have a positive definite stiffness matrix. Other definitions of grasp stability can be found 
in [Salisbury, 1982] [Kerr, 1984] [Baker, Fortune, and Gross , 1985], [Abel et al., 1985], 
[Mishra, Schwartz, and Sharir , 1987], [Nguyen, 1988], and [Cutkosky, 1985]. In this chapter 
we follow Brost [1988] in defining a parallel-jaw grasp as stable when at least one edge of the 
part is aligned with the gripper jaws. 

Other measures of grasp quality have been suggested. Markenscoff and Papadimitriou 
[1989] suggested a quality measure for grasping based on the gripping force needed to balance 
the weight of a part. Barber et al. [1986] and Demmel and Lafferriere [1989] suggested a 
quality measure based on the coefficient of friction needed to maintain stability under a given 
force and torque. Li and Sastry [1988] proposed three quality measures: a worst-case measure 
of stability based on the smallest eigenvalue of the grasp matrix, a volumetric measure based 
on the product of eigenvalues, and a task-oriented measure based on the volume of the largest 
task ellipsoid that can be embedded in the force domain of a grasp. 

3.2.2 Grasp Mechanics 

To achieve a desired grasp configuration, we must control interactions between the part and the 
gripper. Sensors can be used to control part state by actively servoing gripper motion in response 
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to sensor data. This approach is known as active compliance or closed-loop control. Inoue 
[1974] considered the use of force feedback to eliminate uncertainty during grasping. Salisbury 
[1982] introduced the grip Jacobian and stiffness control for grasping. Active compliance for 
robots was also studied by Mason [1978] and Hogan [1984]. 

Another way to control part state is to use passive compliance or open-loop control, where 
part motion is constrained mechanically without the use of sensors. For example, Pingle et 
al. [1974] demonstrated that pushing can be used to eliminate uncertainty while grasping. 
Mason [1982] formalized the role of pushing in robot manipulation. The difficulty is that 
the motion of a pushed part on a planar surface with friction depends on the distribution of 
pressure between the part and the planar surface. In general, the distribution of pressure 
depends on the microscopic contact topology and will change as the workpiece moves. For 
example, a single grain of sand beneath the part's centroid can dramatically affect its rotational 
motion. In his dissertation, Mason showed that the sign of the rotation rate is independent of 
the distribution of pressure and depends only on the relative position of the part's center of 
mass. Erdmann [1984], Rajan, Burridge, and Schwartz [1987], and Brost and Mason [1989] 
developed graphical methods for determining the set of all possible forces that can arise due to 
Coulomb friction. Peshkin [1986] extended Mason's result using a minimum-work principle 
to bound the set of all possible rotations of a pushed part. 

Whitney [1982] analyzed the forces that can arise during peg-in-hole insertion and devel­
oped the remote center compliance device that passively directs these forces toward insertion. 
([Whitney and Junkel, 1982] incorporated a stochastic sensing model into the control of an 
instrumented RCC). The use of passive compliance for grasping was also studied by Fearing 
[1983], Chiu [1985] and Trinkle and Paul [1988]. The kinematics of grasping was studied by 
Kerr and Roth [1986], Cai and Roth [1987], and Montana [1988]. 

The application in this chapter builds directly on the work of Brost [1988], who developed 
a systematic approach to plan single-step grasping operations. He defined a grasp to be stable 
when small perturbations in orientation are cancelled with further squeezing. Starting with 
an interval of possible part orientations, Brost divided the grasping process into pushing and 
squeezing phases and applied Mason's results on the mechanics of pushing to select a grasp 
angle that is guaranteed to produce a stable grasp. 

3.3 Assumptions and Problem Definition 

In this chapter we consider two problems. In the first, we are given a list of vertices representing 
a polygonal part, the part's center of mass, the coefficient of friction, and a range of initial part 
orientations. We are asked asked to find a grasp angle that is guaranteed to produce a stable 
grasp for all orientations in the range. We show that a solution to this problem does not always 
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exist. We then consider a related problem: given the same input, compute a lower bound on 
the probability that a random grasp will be stable. 

Definition 3.1 A grasp consists of orienting the gripper around the part and then closing the 
jaws as far as possible. 

Definition 3.2 A random grasp is a grasp where the gripper's orientation is selected from a 
uniform distribution on the set of planar rotations. 

Figure 3.4: We define the configuration on the left as stable and 
the configurations on the right as wedged. 

The final configuration of the part within the gripper can be either stable or wedged (see 
Figure 3.4). 

Definition 3.3 The set of wedged orientations, Qw, includes all orientations where the part is 
cocked between exactly two vertices. 

Definition 3.4 The set of stable orientations, Θ,, includes orientations where at least one edge 
of the part is aligned with the gripper. 

Wedged configurations arise due to friction between the gripper and the part. Note that the 
set of wedged orientations is infinite and depends on the coefficient of friction. The set of stable 
orientations is finite (at most one per edge). Our objective is to achieve a stable orientation. 
Let Θ/ = Θ„ U Θ,. 

We assume that: 

1. The gripper has two linear jaws arranged in parallel. 

2. The direction of gripper motion is orthogonal to the jaws. 

3. The part is a rigid planar polygon of known shape. 

4. The part's initial position is unconstrained as long as it lies somewhere between the two 

jaws. The part remains between the jaws. 
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5. All motion occurs in the plane and is slow enough that inertial forces are negligible. The 
scope of this quasi-static model is discussed in [Mason, 1986] and [Peshkin, 1986]. 

6. Once contact is made between a jaw and the part, the two surfaces remain in contact 
throughout the grasp. A grasp continues until further motion would deform the part. 

7. The part's center of mass is known. 

8. Friction between part and the jaws can be modelled with Coulomb's Law: F = μΝ, 
where the coefficient of friction is known and independent of velocity. 

Only assumptions 2 differs from those made by Brost [1988]. Assumption 2 restricts the 
action space to the one-dimensional space of gripper angles (Brost treats the two-dimensional 
action space that also includes the direction of gripper motion). This restriction offers three 
advantages: the pushing analysis is independent of the coefficient of friction, the space of 
actions is easier to search, and the resulting motion is simple to implement on existing grippers, 
where jaw motion is rarely coupled to arm motion. 

3.3.1 Coordinate Frames 

Let ™[x,y, θ]{ describe the initial position and orientation of the part with respect to a fixed 
world frame. Let Y[x,y, Θ) describe the position and orientation of the gripper in the same 
frame. Let θλ = (̂  0 —™ θχ) be the initial orientation of the part with respect to the gripper. 
That is, # i = 0 when the part's reference edge is aligned with the jaws. All angles are evaluated 
modulo 2π. Variables are defined in the gripper frame unless an explicit superscript appears. 

As stated above, we assume that the part's initial position is somewhere between the two 
jaws and that the part remains between the jaws throughout grasping. The grasp proceeds by 
monotonically closing the jaws until further motion would deform the part. Thus a gripper 
angle defines a one-step grasp strategy. 

3.4 Pushing and Squeezing Phases of Grasping 

Grasp motion can be divided into two phases. First is the pushing phase, where the part moves 
due to contact with one jaw. This phase continues until the second jaw makes contact. Next is 
the squeezing phase, when the part moves due to contact with both jaws until it reaches its final 
orientation. Let θ2 be the orientation of the part when the second finger makes contact, and 0/ 
be the part's final orientation. 
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For a given polygon, coefficient of friction, and gripper angle, both phases of the grasp 
define a mapping. The outcome of the pushing phase is described by the function 

*2 = Gp(*i) = * , + f e[dy (3.1) 
J Ay 

where #i is the part's initial orientation, θ\ = άθι/dy is the part's rate of rotation relative to the 
jaw separation during the pushing phase, and Ay is how far the jaw travels during the pushing 
phase. 

We define the effect of the squeezing phase with the function 

'' - G<<« = { I J E S T * * <"> 
where θχ is the next stable orientation as the part rotates due to squeezing. 

3.5 Sources of Uncertainty in the Transfer Function 

The rotation rate in equation (3.1) depends on the (time-varying) distribution of pressure at the 
contact between the part and the supporting surface and on the part's orientation. In practice, 
the exact rotation rate is almost impossible to predict [Mason, 1982], [PeshMn, 1986]. The 
amount of jaw travel during of the pushing phase is another source of uncertainty. It depends 
on the initial position of the part between the jaws. 

We can compose Gp with Gq to define a mapping for the entire grasp: G = Gq ο Gp : Θ ι —» 
2®'. G maps an initial orientation to a set of possible final orientations: for any particular 
trial with initial orientation θ\, the outcome will be some 0/ G G(9i). The set of possible final 
orientations is the union over all possible values of Δτ/ and θ\. 

Θ/ = G{h) = U U Gq (#, + / e\dy] , (3.3) 

We desire a grasp angle such that G{B\) C Θ,. 

3.6 Review of Brost's Method 

To motivate the probabilistic treatment in subsequent sections, we review a method reported by 
Brost [1988] for selecting a grasp angle such that the final grasp is guaranteed to be stable. His 
method assumes that the initial orientation of the part is known to within a tolerance interval. 
In this section we review Brost's method and find a bound on the maximal tolerance interval 
required to guarantee a stable outcome - when this bound is exceeded, we cannot guarantee a 
stable grasp and thus consider the probability of a stable grasp. 
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3.6.1 Analysis of Pushing Phase 

Mason showed that when motion is orthogonal to the jaws, the sign of the rotation rate depends 
only the position of the center of mass with respect to the line parallel to the jaw velocity and 
passing through the contact point [Mason, 1982]. To treat uncertainty in the pushing phase, 
Brost incorporated Mason's result into the push-stability diagram: given part orientation and 
direction of pushing, the part's direction of rotation is explicit in the diagram. 

The horizontal axis of the diagram is 9U the angle of the part with respect to the gripper. 
The push-stability diagram is formed by placing χ 's at each angle corresponding to an edge of 
the part, and O's at angles perpendicular to each angle where a vertex is aligned with the part's 
center of mass, taking care to delete χ 's that are unstable and 0 's when a neighboring edge 
makes it geometrically impossible to push toward the center of mass at a vertex. The direction 
of motion between any two marks is always toward the χ (see Figure 3.5.) The push-stability 
diagram depends on part geometry and center of mass and is independent of the friction angle. 

Χ Ο Χ Ο Χ Ο Χ Ο 
0 π/2 π 3π/2 2π 

Figure 3.5: The push-stability diagram for a square. The orien­
tation of the square wit the gripper, θ\, runs along the horizontal 
axis. The x at 0 radians corresponds to a stable pushing orien­
tation. The x at the stable orientations is meant to suggest two 
converging arrows: a perturbation in orientation will produce 
rotation back toward this orientation. The φ at τ/A corresponds 
to a jaw aligned with the diagonal - an unstable pushing equi­
librium. Each 0 is mean to suggest two diverging arrows: a 
perturbation will rotate the square away from this orientation. 

3.6.2 Analysis of Squeezing Phase 

To treat the squeezing phase, Brost introduced the squeeze-stability diagram: the part's direction 
of rotation can be determined from the orientation of the part when both jaws make contact. 
Due to friction between the jaws and the part, the part will wedge between two vertices if the 
angle between opposing vertices and the perpendicular to the jaw is less than the friction angle, 
a = arctan μ. The center of each wedging interval corresponds to the angle where two vertices 
form a perpendicular to the jaws. The width of each interval is determined by the friction angle 
(see Figure 3.6). The squeeze-stability diagram depends on part geometry and the friction angle 
and is independent of the part's center of mass. 



3.7. NECESSARY CONDIUONS TO GUARANTEE A STABLE GRASP 36 

X ( ) X < ) X ( ) X < ) 
Ο π/2 π 3π/2 2π 

Figure 3.6: The squeeze-stability diagram for a square with 
μ = .25. The χ at 0 radians corresponds to the jaw aligned 
with an edge - a stable squeezing orientation. A perturbation in 
the orientation of the square will produce rotation back toward 
this orientation. The < and > between 0 and π/2 delimit a 
wedging interval: a set of orientations where the square can be 
cocked between a pair of diagonal vertices. The width of the 
wedging interval is 2 arctan μ. Outside the wedging interval, 
the part will always rotate toward the nearest x. 

Brost combined these diagrams into the squeeze-grasp diagram (Figure 3.7). From this 
diagram one can find all the initial orientations of the part that are guaranteed to rotate into a 
stable final orientation. By choosing the orientation of the gripper so that the relative orientation 
of the part is one of these initial orientations, we can insure that the final orientation will be 
stable. 

X () X () X () X () 
0 π/2 π 3π/2 2π 

Figure 3.7: The squeeze-grasp diagram for a square with 
μ = .25. Consider the stable orientation at 7r/2. The bold 
line surrounding this orientation is the strong pre-image of 
0/ = π/2. If #i is anywhere in this interval, then the resulting 
grasp is guaranteed to be stable. 

3.7 Necessary Conditions to Guarantee a Stable Grasp 

In this section we define images and pre-images for the grasping problem. We will then relate 
the size of a strong pre-image to an upper bound on the orientational uncertainty required to 
guarantee a stable grasp. 
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3.7.1 Strong and Weak Pre-images of 0 S 

Recall that G is the mapping from initial orientation to the set of all of all possible final 
orientations. We define the weak pre-image of Θ/ as the set of all part orientations that might 
rotate into Θ/, 

0'ι(θ,)^{θι\θ,€θ(θι)}. (3.4) 

The strong pre-image of orientation Bj is the set of initial orientations θ\ that are guaranteed to 
rotate into final orientation 0/. We denote this set by 

11(0,) = mG{») = {9f}} (3.5) 

See Figure 3.7. 

Definition 3.5 The strong pre-image of a set Θ, is the set of all initial orientations that are 
guaranteed to rotate into some element ofQ,: 

Π(Θ,) = {θ\0(θ) C Θ,}. (3.6) 

That is, if we begin with any orientation in Π(Θ4) we are guaranteed to finish with some 
orientation in Θ,. 

Note that for any final orientation, its strong pre-image is always a subset of its weak 
pre-image: if θχ is guaranteed to rotate into 0/, then certainly B\ may rotate into 0/. 

3.7.2 Upper Bound on Uncertainty in θ ι 

Given uncertainty in part orientation (or equivalently, in gripper orientation) expressed as an 
initial tolerance margin for the relative orientation of the part, Brost showed that we can still 
guarantee a stable outcome by shrinking the strong pre-image by the size of the tolerance 
margin. 

Let the tolerance margin be defined with an error radius, e such that the initial orientation 
of the part is θ\ ± e. As long as the strong pre-image is wider than 2e, we can insure a stable 
grasp by choosing a gripper orientation so θ γ is in the center of the interval. 

We can use the squeeze-grasp diagram to determine an upper bound on the tolerance margin 
for a stable grasp to be guaranteed. Let 0 m a * be the largest contiguous interval in the strong 
preimage. As long as 

t < !?==i, (3.7) 

we can insure a stable grasp as above. What if uncertainty exceeds this amount? In particular, 
if we know nothing at all about the part's orientation, so that e = -κ, we cannot guarantee a 
stable outcome in the presence of friction. 
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3.8 Stochastic Analysis 

For cases where we cannot guarantee a stable outcome, we might consider the probability of 
a stable outcome. We can treat each grasp as a trial where the outcome is either stable or 
wedged. We denote the sample space with the symbols {S, W}. Our results will be in terms 
of P{S) = 1 — P(W), the probability of achieving a stable grasp. 

To cope with the uncertainty in initial orientation, we treat θ ι as a continuous random 
variable with probability density function (p.d.f.) /«, (θ\). We find a lower bound on P(S) by 
integrating /β] {θ\) over the strong pre-image of ©s-

3.9 Lower Bound on P(S) 

To determine a lower bound on the probability that a grasp will be stable, consider a case when 
the initial orientation happens to fall in the strong pre-image of ©s. By definition of the strong 
pre-image, this is a sufficient condition for a stable outcome. The probability that θγ € Π(Θ,) 
is thus a lower bound on Ρ(5). Formally, 

P(S)> [fsMde. (3.8) 
Jn{e.) 

Another way to think of this is to consider the set of all initial orientations that might end 
up in a wedged final orientation: the weak pre-image of Θ ω . In the worst case all of these end 
up wedged, so the maximum P(W) is \G~l(Qw)\/2ir. Equation (3.8) follows by observing 
that the orientations guaranteed to succeed are precisely those that cannot end up wedged: 
Π(Θ,) = (?-1(Θω). 

Random Grasping 

If nothing is known about the initial orientation of the part in the world frame it is tempting 
to assume a noninformative prior where all angles have the same probability, i.e. the uniform 
density fw$i (w6i) = ~, However the true prior may be biased and highly non-uniform. 

An alternative is to assume that all orientations of the part in the gripper frame are equally 
likely. We can in fact justify this assumption by commanding a random twist of the gripper prior 
to grasping, i.e. a random grasp. To see that a random grasp gives rise to a uniform probability 
density, recall that the orientation of the part in the gripper frame is θ χ = {w θ9 —w θ ι) (all 
angles are taken modulo 2 π). Let Λ", Υ, Ζ be random variables corresponding to w6g,

H' B\, B\ 
respectively, i.e. Ζ = Χ — Υ. 
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Theorem 3.1 IfX and Υ are two independent random variables defined over the set S1 and 
the pdffor X is uniform, then the random variable Ζ = Y — X mod 2τ has a uniform pdf. 

Proof: 

p(z) = Jp(z,y)dy (3.9) 

= J v{Av) P(y) dy (3.10) 

= J^v{y)dy (3.11) 

= £ . (3.12) 

The conditional probability in the third step is uniform for all y since X has a uniform 
distribution and X and Υ are independent. From Theorem 3.1, a random grasp insures that the 
initial orientation of the part in the gripper frame has a uniform probability density. 

For a random grasp, equation 3.8 becomes 

P(S) > M M (3.13) 
Ζ7Γ 

where 11(0,) depends on part geometry, center of mass, and the coefficient of friction. 

3.10 Examples of Lower Bound on Ρ ( 5 ) 

As stated earlier, given a list of vertices representing a polygonal part, the part's center of mass, 
and the coefficient of friction, we want to find a lower bound on the probability that a random 
grasp will be stable. To find this lower bound, we implemented Equation 3.13 in Common 
Lisp, representing vertices with rational numbers so that the angles can represented exactly 
using rational complex numbers. Examples are shown in Table 3.1. 

A trivial lower bound of zero occurs when the strong preimage shrinks to a point. Recall that 
the size of the strong preimage depends on part geometry and the coefficient of friction. For 
the triangle, 4gon, wrench and key, it is almost always possible to wedge depending on which 
jaw makes contact first. Since we don't know which jaw will make contact first, almost any 
orientation can lead to wedging. For the other objects, note that a stable grasp becomes more 
likely as friction is reduced - with less friction it is harder to achieve a wedged orientation. 

For uniform-density regular n-gons: 

iO if «odd < * » > £ ] 
s ' I 1 - ηα/π otherwise 
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part shape 
triangle 
rectangle 
house 
4gon 
5gon 
wrench 
tuning-fork 
key 

sides 
3 
3 
5 
4 
5 
6 
6 
11 

// = .25 
0.00 
0.69 
0.34 
0.00 
0.60 
0.04 
0.69 
0.00 

μ =.10 
0.00 
0.87 
0.44 
0.00 
0.76 
0.06 
0.76 
0.00 

μ = .05 
0.00 
0.94 
0.47 
0.00 
0.78 
0.07 
0.76 
0.00 

Table 3.1: Lower bound on P(S) varying shape and coefficient 
of friction. (All parts have uniform mass density). 

where α = arctan μ. As we increase the number of edges the probability of a stable grasp 
decreases since there are more opportunities for wedging. Similarly, the probability of a stable 
grasp decreases as we increase the coefficient of friction. When η is odd, we get a trivial lower 
bound of zero since each edge always has an opposing vertex. If the jaws touch the vertex first, 
the object may be pushed into a wedged orientation so the strong preimage shrinks to a point. 
A tighter lower bound on the probability of a stable grasp requires a stochastic model of the 
pushing phase. We explore this extension in Appendix C. 

Regarding an upper bound on P(S), assume that whenever it is possible to rotate to a stable 
edge while pushing, the part will do so. Given a sufficiendy fast rotation rate, the part can 
always rotate to a stable edge during the pushing phase, so the best we can say is Ρ(S) < 1. 

3.11 The Frictionless Gripper 

Merrick Furst pointed out that since the probability of a stable grasp goes to one as the coefficient 

of friction goes to zero, it may be desirable to eliminate friction mechanically. One approach 
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is to cover the jaws with grease, but this has the disadvantage that the part will slip when the 
gripper is lifted out of the plane. We desire low friction in the plane of the part, and high 
friction out of the plane. This can be achieved by adding a linear bearing to one of the jaws; 
the frictionless gripper is discussed in Appendix B. 

3.12 Discussion 

In this chapter we considered the problem of achieving a stable grasp with a parallel-jaw gripper. 
We showed that a stable grasp cannot be guaranteed in the presence of friction and derived a 
lower bound on the probability that a random grasp will be stable. We found that this lower 
bound goes to one as the coefficient of friction goes to zero (Equation 3.14), which suggests a 
modification to the parallel-jaw gripper that we call the frictionless gripper. 

The frictionless gripper insures that the part is in one of a finite number of orientations. 
In the next two chapters we employ the frictionless gripper and refine the sample space to 
distinguish between stable orientations. We derive a probability distribution over the set of 
stable orientations and use this to find multi-step iterative plans for orienting a part in minimal 
expected time. 



Chapter 4 

Stochastically Optimal Parts Feeding 

4.1 Introduction 

We are now ready to apply the stochastic planning framework to a concrete example. In this 
chapter and the next, we consider the problem of parts feeding: orienting parts that are initially 
jumbled. 

The vibratory bowl feeder is a well-known mechanism for feeding industrial parts. As a 
bowl is vibrated with a rotary motion, parts climb a helical metal track. Parts in undesirable 
orientations are deflected back into the bowl so that only parts with a desired orientation emerge 
from the feeder [Boothroyd, Poli, and Murch, 1982]. The difficulty with this method is that the 
track must be designed by trial-and-error; there is currently no systematic theory for generating 
tracks from part geometry. 

We explore the idea of ^programmable parts feeder: a mechanism that can be reprogrammed 
rather than physically modified for new part geometries. The problem of converting part 
geometry into a parts feeding program is an example of manipulation planning in the presence 
of uncertainty. 

We consider the class of polygonal parts, that is, two-dimensional parts with linear edges. 
We propose that the programmable mechanism consists of a frictionless parallel-jaw gripper 
that can be oriented, opened and closed. We define a squeeze action as the combination of 
orienting the gripper, closing the jaws as far as possible, and then opening the jaws. An iterative 
plan is a sequence of such actions followed by a binary filter, some mechanism that recycles all 
but one desired orientation of the part, for example a silhouette trap. Although many different 
performance measures are possible depending on the application, we apply the framework of 
Chapter 2 to define iterative plans that maximize expected feedrate. 

°Parts of this chapter have appeared in [Goldberg and Mason, 1990]. 

42 
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Example 

I 

Figure 4.1: Four traces of a two-step plan for orienting a rectan­
gular part using the frictionless parallel-jaw gripper. Each trace 
runs from top to bottom showing the orientation of both gripper 
and part after each squeeze action. Although the part's initial 
orientation is different in each trace, its final orientation is the 
same. Note that gripper motion for each case is the same. The 
plan is open-loop: it does not depend on sensor data. 

Consider a rectangular part whose initial orientation is unknown. A sequence of two squeeze 
actions will insure that the part's major axis is aligned with the gripper regardless of the part's 
initial orientation. See Figure 4.1. 

Now consider a one-step plan that grasps only once. The one-step plan will align the major 
axis with the gripper unless the part's major axis is initially almost orthogonal to the jaws. If we 
had a probabilistic model of the part's initial orientation, then we could compute the probability 
that the major axis will be aligned with the gripper after one step. If this probability were, 
say, 0.8, then we may be willing to accept the one-step plan rather than the more conservative 
two-step plan. 

How can we compare a one-step plan that succeeds with probability 0.8 and a two-step plan 
that succeeds with probability 1? Consider augmenting the one-step plan with a binary filter 
that rejects parts that are not aligned with the gripper. Rejected parts are randomized and the 
plan is repeated until the part is correctly oriented. We expect that, on average, we will have 
to execute the one-step plan 1 /0.8 = 1.25 times until it succeeds. On the other hand, we only 
have to execute the two-step plan once to succeed. 

If every step in the plan requires one time unit then the expected time for the one-step plan is 
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1.25 units and the expected time for the two-step plan is 2.0 time units. Under these conditions 
we might prefer the one-step plan. Of course we must also consider the time required for the 
filter stage. 

We have compared two plans; there are an infinite number of plans for orienting a rectangular 
part. How can we identify the best plan? Where do the probabilities come from? Can we 
develop a method for optimally orienting polygonal parts that is not completely ad hoc! 

In the next section we describe related work. We then specify assumptions. In section 4.4 
we define a transfer function based on part geometry and use it to specify the elements of a 
stochastic planning problem. We then define a stochastically optimal parts-feeding plan and 
give examples. 

4.2 Related Work 

Figure 4.2: A feeder orients parts as they arrive on the left-hand 
conveyor belt. 

A schematic illustration of a parts feeder is shown in Figure 4.2. There are many designs for 
parts feeders that use sonic or optical sensing such as the one reported by Suzuki and Kohno 
[1981]. Once the orientation of a part is sensed the part can be mechanically reoriented with 
an actuator. Since mechanical actuation is unavoidable, it may be less expensive to eliminate 
sensing and rely only on passive compliance. 

An excellent introduction to mechanical parts feeders can be found in [Boothroyd, Poli, and 
Murch , 1982]. Boothroyd, Poli and Murch describe vibratory bowl feeders in detail as well 
as non-vibratory feeders such as the magnetic and revolving hook feeders. They note that the 
feedrate for a parts feeder is related to the probability that parts are aligned correctly when they 
encounter a mechanical filter and give probabilistic models for the orientation of rectangular 
and cylindrical parts dropped at random. 

In his master's thesis, Singer [1985] noted that a hard-tooled bowl feeder requires several 
months of tooling. He identified criteria for a parts feeder that included changeover time for new 
parts, ability to handle a wide variety of parts, and feed rate. He proposed several designs for 
programmable parts feeders, one using impact and another where programmed vibration was 
used to actively excite parts into a stable orientation. See also Singer and Seering [1987]. The 
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Sony Corporation has recently begun to market a parts feeder that uses programmed vibration 
[Hitakawa, 1988]. 

The following four designs for programmable parts feeders use binary models of uncertainty 
and cost, i.e. guaranteed plans. Mani and Wilson [1985] developed plans to orienting polygonal 
parts using a sequence of pushing actions. They used heuristics to find a plan that maps all 
possible initial orientations into a single final orientation. Peshkin and Sanderson [1988] 
considered the related problem of designing an arrangement of planar "fences" such that 
polygonal parts on a conveyor belt are oriented as they slide along the fences. To plan, they 
define a configuration map, Ca, for each fence angle to be a boolean function on the space 
Θ χ Θ such that 0α(θ, θ') = 1 if it is possible to reach state Θ' from state θ by passing by a 
fence at angle a. Using a uniform discretization of the space of fence angles, they performed 
a depth-first search through the space of fence arrangements. For most of the parts they 
considered, they were able to find an arrangement of fences guaranteed to orient a given part. 
Due to the discretization of fence angles, this search procedure neglects fence arrangements 
using intermediate angles. Erdmann and Mason [1986] developed multi-step plans to orient 
parts with a sequence of tray-tilting actions. Taylor, Mason, and Goldberg [1987] and Mason, 
Goldberg, and Taylor [1988] considered guaranteed multi-step plans to orient parts using a 
sequence of grasps with a parallel-jaw gripper. We found that it was impractical to search the 
continuous action space that resulted from frictional contacts. 

Each of the feeders described in the previous paragraph used mechanical compliance to 
constrain the state of the part. In this chapter we propose another feeder design that uses 
mechanical compliance. In contrast to the preceding approaches, we use a stochastic framework 
to define optimal plans. 

4.3 Assumptions 

We assume that: 

1. The gripper has two linear jaws arranged in parallel. 

2. The direction of gripper motion is orthogonal to the jaws. 

3. The part is a rigid planar polygon of known shape. 

4. The part's initial position is unconstrained as long as it lies somewhere between the two 
jaws. The part remains between the jaws throughout grasping. 

5. All motion occurs in the plane and is slow enough that inertial forces are negligible. The 

scope of this quasi-static model is discussed in [Mason, 1986] and [Peshkin, 1986]. 
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6. Both jaws make contact simultaneously (pure squeezing). 

7. Once contact is made between a jaw and the part, the two surfaces remain in contact 
throughout the grasp. A grasp continues until further motion would deform the part. 

8. There is zero friction between part and the jaws. 

9. We can design a binary filter that accepts a particular orientation of the part and rejects all 
others. 

These assumptions are similar to those made by Brost [1988], Taylor, Mason, and Goldberg 
[1987], and Mason, Goldberg, and Taylor [1988]. Assumptions 2,6, and 8 simplify the analysis 
and improve the combinatorics of the search. By restricting gripper motion to be orthogonal 
to the jaws (assumption 2), we obtain a one-dimensional action space. Using a frictionless 
gripper (assumption 8) insures that the state space is the finite set of stable part orientations 
(see Appendix Β for a physical implementation). Assuming simultaneous contact (assumption 
6) greatly simplifies the mechanical analysis. In Appendix Ε we show how assumption 6 can 
be relaxed. 

Under the framework of Chapter 2, a manipulation planning problem is a5-tuple, (Θ, λ 0 , Λ, Τ, C): 
a finite state space, initial probability distribution, finite action space, a transition matrix for 
each action, and a cost function. In the next section we introduce a transfer function and use it 
to specify the elements of the planning problem. 

4.4 The Transfer Function 

The transfer function for a squeeze action provides a mapping from an initial orientation of 
the part to a final orientation of the part. Each squeeze action corresponds to an orientation of 
the gripper. Since rotating the gripper is equivalent to rotating the part, we define the transfer 
function in terms of the part's orientation with respect to the gripper. The transfer function 
depends on part geometry. For a given part, we derive the squeeze function based on another 
function that we call the diameter function. 

4.4.1 The Diameter Function 

When a part is grasped with the frictionless gripper, it assumes one of a finite number of stable 
orientations. These stable orientations correspond to local minima in the diameter function 
defined as follows. 

Let a two-dimensional part be described with a continuous curve, C, in the plane. The 

distance between two parallel tangent lines varies with the orientation of the lines. 
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Figure 4.3: The diameter function for the four-sided part shown 
at the right in its zero orientation. During a squeeze, the part ro­
tates so as to reduce the diameter, terminating when the diameter 
reaches a local minimum. 

Definition 4.1 The diameter function, d : S1 —• 3ft, is the distance between two parallel 
tangents at angle Θ. 

For polygonal parts, the diameter function is piecewise sinusoidal as shown in Figure 4.3. An 
0(n log n) algorithm for computing the diameter function for an η-sided polygon is given in 
Appendix D. 

When a part is grasped between the jaws of the gripper, the distance between the jaws 
corresponds to the diameter. Closing the jaws changes the diameter and thus the relative 
orientation of the part. The jaws continue closing until the diameter is at a local minimum that 
also defines a stable orientation of the part. The diameter function can be viewed as a potential 
energy function for a conservative system (see appendix D). 

4.4.2 The Squeeze Function 

During a squeeze, part motion is determined by the diameter function. That is, given an 
initial orientation of the part with respect to the gripper, the part's final orientation can be 
determined from the diameter function. A transfer function, relating initial orientations to final 
orientations, can be represented with a piecewise constant function that we call the squeeze 
function, s : S 1 —* Sx. 

We define the squeeze function such that if θ is the initial orientation of the part with respect 
to the gripper, s(6) is the orientation of the part with respect to the gripper after squeezing. The 
squeeze function can be derived from the diameter function. All orientations that he between a 
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Figure4.4: The diameter and squeeze function for the four-sided 

part. 

pair of adjacent local maxima in the diameter function will map into the same final orientation. 
The squeeze function is constant over this interval of orientations. Each local maximum in 
the diameter function corresponds to a discontinuity in the squeeze function. In order for the 
function to be single-valued, we assume that all steps are closed on the left. See figure 4.4. 

Since the squeeze function is piecewise constant, its range is actually the finite set of stable 
states, Θ4. This set includes up to 2n states, where η is the number of edges on the polygon 
(fewer if some polygon edges are unstable). Note that more than one polygon can yield the 
same squeeze function. E.g., all triangles with obtuse angles give rise to the same squeeze 
function. 

4.4.3 The State Space 

The part's initial orientation in the world frame is the uncountable set of planar rotations. After 
the first action, the part's orientation relative to the gripper will be one of the stable orientations, 
Θ, e Qa. By denning the state to be the part's orientation relative to the gripper after an action, 
the state space of the system becomes the finite set Θ,. To derive a prior probability distribution 
on this state space, we must consider the part's probability distribution in the world frame. 
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4.4.4 Prior Probability Distribution 

The part's initial orientation in the world frame is uncertain. Say that we can describe this 
orientation with a continuous random variable with probability density /(#). Since the state 
space of the system is denned as the part's orientation relative to the gripper after an action, we 
must convert this density function into a discrete probability distribution on the set Θ,. After 
the first action the probability that the part is at orientation Θ' is related to the probability that 
the part was initially in some orientation θ such that s{B) = Θ'. Accordingly, we can compute 
the first probability distribution (hyperstate) by integrating the probability density between 
discontinuities in the transfer function. 

The first squeeze action in the plan is a random grasp, where gripper orientation is chosen 
from a uniform probability distribution on the interval [0,2π). Theorem 3.1 shows that this 
is equivalent to assuming that the initial part orientation in the world frame has a uniform 
probability density, f{6) = g> In this case the initial hyperstate can be computed based on the 
width of steps in the transfer function. 

An ambiguity arises when the part's initial orientation is exactly at a local maximum in the 
diameter function corresponding to an unstable equilibrium. However if we assume that the 
prior probability density for orientations is continuous, the initial squeeze will encounter an 
unstable equilibrium with probability zero. Thereafter we avoid ambiguous actions. Next we 
consider the space of actions. 

4.4.5 The Action Space and Transition Matrices 

We specify an action by the orientation of the gripper. 

Definition 4.2 A squeeze action (at angle Θ) consists of orienting the open gripper at angle θ 
around the part, closing the jaws as far as possible, and then opening the gripper. 

Let θ be the orientation of the part in the world frame. If the gripper is oriented at angle θ9, 
then the relative angle of the part is θ — θ9. After the squeeze action, the final orientation of 
the part is s(0 — θ8) in the gripper frame and s(6 — θ9) + θ3 in the world frame. For an action 
occurring at angle ΘΒ, we define 

»:{B) = s{9-9,). (4.1) 

The space Sl is uncountably infinite, so there is an uncountable number of squeeze actions. 
Fortunately, the continuum of squeeze actions can be partitioned into a finite number of 
equivalence classes. 

We treat two actions as equivalent if they have the same transition matrix. Recall from 
chapter 2 that the transition matrix for an action defines a mapping between hyperstates. For 
squeeze actions there is no control uncertainty - the part's final orientation is completely 



4.4. THE TRANSFER FUNCTION 50 

determined by its initial orientation - so the transition matrix for each squeeze action is a binary 
matrix. 

After an action, the part is in one of its stable states. The next action defines a mapping 
between stable states. Consider what happens if the part is at orientation Θ, (relative to the 
gripper) and the gripper is rotated by angle 6g. After the gripper is closed, the final orientation 
of the part relative to the gripper will be s(0a — θ3). Since the squeeze function is piecewise 
constant, a range of gripper angles gives rise to the same outcome. As we rotate the gripper the 
outcome changes when Θ, — 6g crosses a discontinuity in the squeeze function. 

To take into account all stable initial orientations, we must consider all pairs of initial states 
and discontinuities in the squeeze function. One way to do this is to imagine two copies of Sl, 
the space of planar rotations. In the first copy we mark all stable angles. In the second copy 
we mark all discontinuities in the transfer function. As we rotate the first copy of Sl across the 
second copy, we generate a new transition matrix every time a mark in the first copy crosses 
a mark in the second copy. The relative angle between copies defines the associated action. 
For each transition matrix, we choose an action in the center of the equivalence class to be the 
representative action. Since there are 0(n) marks in each copy, there are 0(π 2 ) unique actions. 

A plan is a composition of actions. Consider a two-step plan, p, with actions at angles θ ι 
and #2 respectively. Let 

p{9) = sh ο ββι{θ) = s(s(e - θ,) - θ2). (4.2) 

Orienting a Part up to Symmetry 

We noted that the squeeze function has period τ due to symmetry in the gripper; rotating 
the gripper by 180 degrees produces a symmetric arrangement that preserves the diameter. 
Rotational symmetry in the part also introduces periodicity into the squeeze function. In 
general the transfer function has period Τ such that 

3(θ + T) = (s{e) + T) mod 2ττ. (4.3) 

For polygons with r-fold rotational symmetry, the squeeze function will have period TT = 
2π/τ(1 + r mod 2). For example, a part with no rotational symmetry (r = 1) produces a 
squeeze function with period π. An equilateral triangle has 3-fold rotational symmetry; its 
squeeze function has period π/3. A square has 4-fold rotational symmetry; its squeeze function 
has period π/2. 

Periodicity in the squeeze function gives rise to aliasing, where the part in orientation θ 
behaves identically to the part in θ + Τ. Any sequence of actions that maps θ to Θ' will map Θ + Τ 
to Θ' + T. This implies that there is no sequence of squeeze actions that can map orientations θ 
and θ + Τ into a single final orientation. 
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Definition 4 3 For a given part, let Τ be the smallest period in its transfer function. We say 
that a plan orients a part up to symmetry if the set of possible final states includes exactly 
2T/T states that are equally spaced on Sl. 

For example, for a part with no rotational symmetry, a squeeze plan orients the part up to 
symmetry if the plan that yields exactly two final states τ radians apart. A part with 3-fold 
rotational symmetry can be oriented up to symmetry with a squeeze plan that yields six possible 
final states each π/3 radians apart. 

4.4.6 The Cost Metric 

The cost function depends on the application. To illustrate the approach, we relate a cost 
function to the time required to orient a part (we consider a cost function based on stability 
in section D.2). Let ca be the cost of a grasping action and c/ be the cost of passing the part 
through the binary filter. Consider a t-step plan /?;. The cost for one iteration of pi is ica + c/. 

Recall that the binary filter rejects all but one orientation. The plan tries to make this 
orientation likely so that parts go through as often as possible. As described in Section 
2.3, the expected number of iterations needed to achieve this orientation is the reciprocal of 
the probability of achieving the orientation on any single iteration of the plan. For a given 
hyperstate, we can identify a most-likely state (breaking ties arbitrarily), 

0*(A)=argmaxP(0), (4.4) 
©, 

where Ρ(θ) is the probability of θ in hyperstate λ. The hyperstate that results from executing 
plan/? is λ 0 Pp. For a given combination of initial hyperstate and plan, let θ* = #*(λ0 Pp). After 
executing the plan, the gripper aligns the part over the filter so that only parts in orientation Θ* 
are accepted. 

As derived in Chapter 2, we expect that on average, plan ρ will go through 1 /Ρ(0*) iterations 
until Θ* is achieved. Since the cost per iteration for a z-step plan is ica + c/, the expected cost 
for the iterative plan is 

CM = iS+^t. (4.5) 

And an optimal i-step plan is one with minimal expected cost, 

p* = argmin C{pi). (4.6) 
Pi 
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4.5 Definition of Stochastically Optimal Plan 

Given part geometry as a list of vertices, we use the analysis in the preceding section to obtain 
the 5-tuple, (Θ, Ao, A, P, C). Equation 4.6 defines an optimal iterative i-step plan for each i. 
Over all plans, the minimal expected cost is 

C'=minC(p*) (4.7) 
i 

Definition 4.4 A stochastically optimal parts-feeding plan, p*, is apian that orients a part with 
minimal expected cost, C(p*) = C*,or equivalently, with maximal expected feed rate. 

By this definition there may be more than one stochastically optimal plan due to ties. Thus to 
be precise we should refer to "an" optimal plan rather than "the" optimal plan. In the text I may 
occasionally refer to "the optimal plan" with the tacit understanding that it may not be unique. 

4.6 Theorem: Stochastically Optimal Plans are of Length 
0(n) 

Theorem 4.1 A stochastically optimal plan requires no more than 2π( ̂ - + 1) steps, where η 
is the number of edges, Cf is the filter cost, and ca is the cost for a single action. 

Proof. We find an upper bound for the expected cost of an optimal 1-step plan. This provides 
an upper bound on the number of steps in the optimal plan. 

Let p\ be the optimal 1-step plan. Its expected cost is 

C{P\) = ±±2-, (4-8) 
Pi 

where ca is the cost for one action, c/ is the cost for the filter, and p\ is the probability associated 
with the most likely outcome. Since the probability mass of 1.0 must be distributed over no 
more than 2n states, the most likely outcome must have probability at least 

Combining Equations 4.8 and 4.9, we get an upper bound on the expected cost of the optimal 
1-step plan: 

2n{ca + cf)>C{p\). (4.10) 
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Say the optimal plan has length k. Let p*k be the optimal plan. Then pi costs no more than 

Pv 
2n(ca + cf)>C(p\)>C(pl). (4.11) 

Even if the fc-step plan succeeds with probability one, its expected cost is 

C(pl) > kca. (4.12) 

Combining inequalities, 

Rewriting, 

p l > **• + ' ' . (4.13) 

2n(ca + cf) > kca. (4.14) 

k<2n(^ + l). (4.15) 

4.7 Problem Definition 

We define a stochastic parts-feeding problem as follows: 

• Given a list of η vertices describing a planar part and the ratio c = Cf/ca, where c/ is the 
cost of the filter step and ca is the cost of a single squeeze action. 

• Find a list of gripper angles corresponding to a plan for orienting the part with minimal 
expected cost (a stochastically optimal plan). 

We represent vertices with rational numbers so that gripper angles can be represented exactly 
using rational complex numbers. In the examples below, c — 1. 

4.8 Implementation 

One way to find an optimal plan is to use breadth-first search as follows. Recall that the space 
of plans defines a tree where each node is a hyperstate and each link corresponds to an action. 
The root is the hyperstate resulting from the first action. The first level of nodes corresponds 
to the outcome of one-step plans. The second level of nodes corresponds to the outcome of 
two-step plans. We consider all hyperstates at each level. A path from the root to the min-cost 
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hyperstate at level i corresponds to a stochastically optimal i-step plan. Theorem 4.1 shows 
that we only need to search to a fixed depth bound to find the optimal plan. 

We implemented the breadth-first search in Common Lisp and tested it on several familiar 
shapes as well as on a test set of 2000 randomly generated polygons (We generate 10 random 
points in the unit square and find their convex hull; the average number of sides was 5.9). If the 
planner does not find an optimal plan after generating 1000 nodes, it halts and reports failure. 

The planner found an optimal plan for 99% of the polygons in the test set, running each 
case in under a minute on a Sun 3/60. For the remaining 1% of the polygons in the test set, 
the breadth-first search terminated after searching 1000 nodes. Table 4.1 shows some typical 
results. 

part shape 
triangle 
rectangle 
house 
4gon 
5gon 
wrench 
tuning fork 
key 

# sides 
3 
4 
5 
4 
5 
6 
6 

11 

1-step 
9.5 
6.4 
5.0 

14.3 
8.6 
9.1 
4.9 
9.0 

2-step 
8.2 
6.0 
6.0 

12.0 
6.5 
7.4 
6.0 
6.2 

3-step 
8.0 
8.0 
8.0 

16.0 
8.0 
8.0 
8.0 
8.2 

4-step 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 
10.0 

Table 4.1: Expected time for grasping plans. Values are in time 
units where each squeezing step and the filter step takes one 
unit. Stochastically optimal plan for each part is indicated in 
boldface. 

Figure 4.5 shows a typical plan with the evolution of the probability distribution for the 5-
sided house-shaped part as it goes through the plan. Due to symmetry in the diameter function, 
there is no sequence that can orient the part beyond a 180° ambiguity. In this case we might 
use the filter to only accept parts in the orientation shown at the lower left. 
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Random squeeze: [.10 .40 .10 .40] 
Squeeze at 45°: [.00 .50 .00 .50] 

Figure 4.5: Four traces of open-loop plan for the house shape: 
squeeze at random orientation (here normalized to 0°), then 
squeeze at 45°. Below: evolution of the probability distribution 
as the plan proceeds. 

The cost per iteration of the one-step plan is 2 time units, and we expect to go through 
1/.40 = 2.5 iterations on average until achieving a desired orientation, so the expected cost 
for the one-step plan is 5.0 time units. The cost per iteration of the two-step plan is 3 time 
units, and we expect to go through 1/.50 = 2.0 iterations on average until achieving a desired 
orientation, so the expected cost for the one-step plan is 6.0 time units. For this part geometry, 
a one-step iterative plan is stochastically optimal. 

Figure 4.6 shows a typical plan. In this case the four-step plan is stochastically optimal. 

4.9 Discussion 

In this chapter we propose a design for a programmable parts feeder using a frictionless 
parallel-jaw gripper and binary filter. Any two-dimensional part can be analyzed by computing 
its diameter function. We give an algorithm for automatically generating stochastically optimal 
open-loop iterative plans - i.e. programs - for the parts feeder. The purpose of this chapter is 
to illustrate the framework of chapter 2 with a specific application where: 

• the mechanical behavior of the part can be related to its geometry, 

• the state and action spaces can be discretized based on mechanics. 

• a discrete probability distribution can derived by integrating a prior probability density 
over regions of state space, 
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Random squeeze (0°): 
Squeeze at 71°: 
Squeeze at 35°: 
Squeeze at 8°: 

.12 .14 .11 .13 .12 .14 .11 .13] 

.00 .25 .00 .25 .00 .25 .00 .25] 

.00 .25 .25 .00 .00 .25 .25 .00] 

.00 .50 .00 .00 .00 .50 .00 .00] 

Figure 4.6: Above: Eight traces of plan to orient part (4gon) up 
to symmetry. This is the stochastically optimal plan. Below: 
Evolution of the probability distribution as the plan proceeds. 

• a cost model for can be related to throughput. 

The last two items comprise the real-valued metric used to compare plans. 

4.9.1 Randomizing to Justify Prior Probabilities 

We justify the assumption that the initial orientation of the part in the world frame has a uniform 
prior distribution by injecting a random twist of the gripper prior to the first grasping operation. 
If we had an accurate model of the underlying probability distribution, we might be able to 
generate more efficient plans. One way to approach this is to estimate the prior distribution 
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empirically, that is, by observing the initial state in a number of trials and replanning based on 
the new estimates. Since it may be difficult to observe the initial state, we could monitor the 
rejection rate of parts going through the filter. This data would give partial information about 
the initial distribution - that is, a rejection tells us only that the part's initial orientation was in 
some subset of the discrete state space. Statistical methods for estimating the prior distribution 
from such data are discussed in [Dickey et ai, 1987, Shefrin, 1981]. 

Monitoring the state of the system can also be useful for modifying the plan on-line, i.e. 
branching based on sensory data. Of course the resulting plans are no longer open-loop. As 
mentioned in chapter 1, stochastic methods can be very powerful for treating noisy sensor data. 
In chapter 7 we outline how the stochastic framework can be extended to incorporate sensor 
data. 

4.9.2 Control Uncertainty 

In this chapter we assumed that both jaws make contact simultaneously so that there is no 
control uncertainty. However if one jaw makes contact first and pushes the part, then there 
is control uncertainty since to predict the final orientation of the part we need to know the 
rotation rate and the pushing distance, which in turn depends on the microscopic interface at the 
support surface as discussed in chapter 3. We can treat this form of uncertainty by modelling 
the transfer function with a conditional probability distribution. Alternatively, we can consider 
the class of push-grasp motions [Brost, 1988], that push the part with one jaw for a sufficient 
distance so that the part rotates into a stable orientation prior to contact with the second jaw. 
This extension is treated in appendix E. 

4.9.3 Worst-Case Computational Complexity 

A nagging difficulty with the reported algorithm is its worst-case running time. The breadth-
first search reported in section 4.5 has branching factor 0(n2), where η is the number of edges 
on the part. Although Theorem 4.1 provides a linear bound on the depth of the search tree, 
the resulting search may require exponential time. In the next chapter we present a planning 
algorithm that is guaranteed to run in time 0(n2). 



Chapter 5 

Backchaining Algorithm 

5.1 Introduction 

Stochastic methods are commonly criticised for requiring exhorbitant amounts of computation. 
In the previous chapter we defined stochastically optimal plans for a programmable parts feeder. 
To find optimal plans, we proposed a breadth-first search through the space of all plans; in the 
worst-case, planning time is exponential in the number of part vertices. 

In this chapter we present an efficient algorithm that uses backchaining to find stochastically 
optimal parts-feeding plans. The planner runs in two phases. Phase I finds a series of plans 
based on part geometry: a one-step plan, a two-step plan, and so on up to a fixed length limit. 
Phase Π applies cost and probability models to select a globally optimal plan. We prove that 
the algorithm is correct, complete, and runs in time 0(n2). 

5.2 Related Work 

Phase I of the algorithm works by propagating sets of states backward from a unique final state. 
It is thus closely related to the preimage backchaining approach described in section 1.1.4. In 
that approach, if Θ is a subset of state space, we can consider the image of Θ under action 
o. Similarly, we can consider a preimage of Θ under action ο to be a subset of state space 
whose image under action a is Θ. Given an initial and desired subset of state space, we can 
work backwards from the desired subset, chaining preimages until we find a preimage that 
contains the initial subset of state space. The resulting sequence of actions is guaranteed to 
yield a desired state. Finding a strategy using the preimage-backchaining approach can require 
extensive computation. The general problem of planning a sequence of compliant motions to 

58 
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reduce uncertainty was shown to be PSPACE-hard by Natarajan [1986] and non-deterministic 
exponential time hard by Canny [1987]. 

Natarajan [1989] considered several computational problems related to the design of parts 
feeders. He considered the following problem where there is no control uncertainty. 

Given k functions /i, /2, •••, Λ •* Θ —» Θ, find a mapping /0 that is a composite of 
the /;'s such that /0 is a constant function on Θ, i.e., |/ο(Θ)| = 1. 

The set Θ corresponds to a discrete set of part states. The functions /i,/a, .-.,/* correspond 
deterministic transfer functions that change the state of a part. A parts feeder that will accept 
parts in any state and output parts in a unique state can be designed based on the composite 
function /0. We say that the function /0 collapses the set Θ. Natarajan neglected the mechanics 
of transfer functions and focussed on the abstract problem of combining a given set of functions. 

Natarajan presented an algorithm to solve this problem in time 0(kn4), where k is the 
number of functions and η is the number of states. The algorithm reduces the size of the initial 
state set by searching a graph where each node contains a pairs of states. Each edge between 
nodes corresponds to some /»that provides a mapping between pairs. For any pair of states 
in the initial set, the algorithm uses a depth-first search to find a sequence of functions that 
will merge this pair into a single orientation. If no such pair exists then the algorithm halts 
and reports failure. This greedy algorithm works because the problem satisfies the inclusion 
property: if there exists a composite function that collapses Θ, then there exists a composite 
function that collapses any subset of Θ. That is, no matter which pair we choose to reduce at 
each stage, it is never necessary to backtrack. 

Note that there may be a sequence that collapses a subset Θ' C Θ even though there is 
no sequence that collapses Θ. Natarajan cited a result by Kozen [1977] as evidence that 
solving the problem for an arbitrary initial subset is PSPACE-Complete. This lead Natarajan 
to consider a restricted class of transfer functions. Say that the states have a cyclic ordering 
61 ύ h di ••• ~ή θη •< θ ι, as is the case for the set of planar orientations. The function 
/ is monotonic if the sequence /(#i),/(#2)> ••• also has cyclic order. Recendy, Eppstein 
[1990] reported an optimal Ο (/en2) algorithm for the restricted problem where all functions are 
monotonic. 

In chapter 4 we analyzed the mechanics of grasping with a frictionless parallel-jaw gripper 
and identified a physically realizable class of actions, the squeeze actions, that yield a monotonic 
transfer function. Since we showed in the previous chapter that the number of unique actions 
is 0(n2), Eppstein's algorithm would allow us to find, in time 0(n 4 ), a plan that collapses the 
state set. In this chapter we exploit the fact that the transfer functions due to grasping arise 
from cyclic shifts of the diameter function. We present an algorithm that finds, in time 0(n2), 
a stochastically optimal plan of length 0(n) that collapses the state set. 
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5.3 Assumptions and Problem Statement 

As in Section 4.7, we define a stochastic parts-feeding problem as follows: 

• Given a list of η vertices describing a planar part and the ratio c = c/ cQ, where c/ is the 
cost of the filter step and cQ is the cost of a single squeeze action. 

• Find a list of gripper angles corresponding to a plan for orienting the part with minimal 
expected cost (a stochastically optimal plan). 

In this chapter we randomize the initial gripper orientation to insure that the initial distribution 
of states is uniform. In Appendix F we show how the algorithm can be extended to non-uniform 
probability density functions. 

We assume that all steps in the transfer function are closed on the left. Let Τ be the smallest 
period in the transfer function. 

5.3.1 Images and Preimages 

We define the transfer function for a set of angles as 

& = 3(Θ) = {3{θ)\θ£Θ}. (5.1) 

That is, if the initial orientation is in θ, then after the action the orientation will be in Θ'. We 
say that Θ' is the image of Θ. Similarly, we define the inverse operation: 

0 = s - , ( 0 ' ) = { ^ ) e e ' } . (5.2) 

If the orientation after the action is in Θ', then the orientation before the action must have been 
in Θ. We say that Θ is the preimage of Θ'. 

5.4 The Algorithm 

The algorithm for finding a stochastically optimal parts feeding plan proceeds in two phases. 
Phase I uses part geometry to find a series of geometrically optimal plans. Phase II applies 
cost and probability models to the geometrically optimal plans to select a stochastically optimal 
plan. 
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1. Compute the transfer function for squeezing. Let Τ be its period. 

2. Find the widest single step and define Θο,Θι such that Θο = .s(0i). 
Let/ι, = |Θι|. Let TV = j j (c+ 1). Lett = 2. 

3. Let Θ; be the widest interval such that |.s(©;)| < /i,_i. Let hi = |0,-J. 

4. If i > Ν or hi = T, let k = i and goto step 5. Otherwise, increment i 
and goto step 3. 

5. Return the list (0o, 0i,..., 0fc). 

Figure 5.1: Phase I 

5.4.1 Phase I 

Phase I, given in figure 5.1, works backward from a unique final orientation - the set ©o 
contains only one point. 

Figures 5.2 through 5.4 illustrate how the algorithm proceeds for a rectangular part. All 
orientations in 0 i map into the single orientation in 0o when the frictionless gripper is closed. 
So 0o is the image of θ ι, and 01 is Uiepreimage of ©o- Step 3 of phase I searches for the widest 
interval whose image is smaller ©i_i. We can implement step 3 geometrically using a square 
box of dimension Λ.,•_ ι. We position the box over the step function such that the range of output 
angles contained in the box is smaller than the range of input angles. That is, the function must 
enter on the box's left-hand edge and exit on the box's right-hand edge as illustrated in Figure 
5.4. 

Termination Condition 

Phase I terminates when either i > N, where Ν is such that the cost of further actions outweighs 
any possible improvement in the probability of success, or hi = T, when the object is oriented 
up to symmetry. To determine N, consider that we have a one-step plan that succeeds with 
probability hi/ΐπ, so the expected cost of this one-step plan is jf-(ca 4• c/). A better Λ'-step 
plan must have lower expected cost. But the expected cost for an iV-step plan is at least Nca. 
This is better when Ν < ψ(ο + 1). Thus there is no need to consider plans longer than this 
bound (see also Theorem 4.1). 
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Figure 5.2: For the rectangular part shown at the right, The first 
step is to compute the squeeze function as shown. 

Figure 5.3: In step 2, the widest single step in the transfer 
function is identified. All the orientations in Θι (horizontal bar 
at bottom), map into the single final orientation: ©o (dot at x). 
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Figure 5.4: In step 3, we identify the largest interval whose 
image is smaller than h\ = |Θι|. This can be visualized by 
left-aligning a box of dimension h\ with each step. If the 
squeeze function emerges from the right edge of the box, then 
the corresponding image is smaller than h\. The largest such 
interval in this case is Θ2 (shown at bottom). 

Recovering Plans from a Sequence of Preimages 

As the algorithm proceeds, the interval of orientations corresponding to each preimage is shifted 
to fit within the following preimage. Shifting the set of part orientations is equivalent to rotating 
the gripper. Thus the relative position of adjacent preimages defines a gripper orientation. 

The relative position of the preimages Θ 0,Θι defines a one-step plan that collapses all 
orientations in Θ1 to the single orientation in Θο• The set Θι becomes the image for Θ2 such 
that there is a two-step plan for collapsing all orientations in Θ2 to the single orientation in Θ0. 

The sequence of images Θο, Θι,..., Θ^ defines a sequence of plans. To recover the plans we 
work backward from the final image, Θο (a point). Let #i be the leftmost point in image Θ;: 
Θ,• = [$i, θ{ -f hi). The relative orientation of Θι with respect to Θο is σ\= θ\ — #0• An action 
applied at angle σι will cause all orientations in Θ1 to be aligned with the gripper. 

Next we relate the relative orientation of Θ2 to that of Θι. This is σ 2 = 6j — θ\. That is, 
by rotating the gripper by σ2 radians and then squeezing, we convert all orientations in image 
Θ2 to orientations in image Θι. We proceed backwards until we reach Θ;. Then by reversing 
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and negating the sequence: [—σ,•, — σ,•_ι,..., —σι] we have a set of gripper angles that defines 
an i-step plan for converting all orientations in Θ{ to the single orientation θ0. 

Note that at each step we align the images precisely against their left edge. We can allow 
some error margin in gripper angle by noting the relative difference in size between neighboring 
intervals in the sequence. For example Θ ι is smaller than 0 2 so we can adjust the gripper angle 
by half the difference in size. Let et• = (|0,| — |θ,•_ι |)/2. 

Each i-step squeezing plan is given by 

pi = [-Vi + Q, -eri-i + ε ί_ 1,...,-σι + e{\. (5.3) 

Phase I returns Ν preimages corresponding to a 1-step plan, a 2-step plan, and so on up to 
an Ν — 1-step plan. For each i, let p, be the corresponding i-step plan. Before describing Phase 
Π, we prove that each plan generated by Phase I is geometrically optimal. 

5.4.2 Phase I Finds Geometrically Optimal Plans 

Definition 5.1 An i-stepplan is geometrically optimal if there is no i-stepplan that collapses 
a larger set. 

Definition 5.2 We say that plan pi collapses the subset 0,- if 

Pi(Qi) = Θ0. (5.4) 

where 0o includes only a single point in state space. 

We prove that each subplan found by Phase I is geometrically optimal in three steps. First 
we show that any plan that collapses a discontiguous subset also collapses a larger contiguous 
subset. Then we shown that the maximal subset that can be collapsed by any plan is contiguous. 
Then we show that pi collapses a maximal contiguous subset. The proof of the first part relies 
on the assumption that the transfer function is monotonically non-decreasing. 

Definition 5.3 The closure of set 0, denoted by C0, is the smallest contiguous set of state 
space that contains 0. 

(This is not to be confused with the closure of an open set). If 0 is not contiguous, |01 < \CQ\. 

Lemma 5.1 For any plan p, if ρ collapses 0, then ρ also collapses the closure ofQ. 
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Figure 5.5: Θ is a discontiguous subset of the space of orien­
tations, S1. The figure illustrates the closure of Θ as the union 
of a pair of contiguous subintervals, Θα, 0C, and the interval 
between them, 0j,. 

Proof: If Θ is contiguous the lemma is obviously true. Say Θ is not contiguous. Let 0(, 
be a gap in Θ as shown in figure 5.5 such that such that Θα •< Θ& •< 0C, 0 O U 0 £ C Θ, and 
0 f l U 0 b U 0 c C C 0 . 

We show that ©(, must be collapsed by the plan that collapses its neighbors. For any interval 
Θχ, let Θχ,ί-j be the image of interval Θχ after j steps of plan />,•. For example 0O,, = 0O, the 
image after zero steps. And θα,ο = θο, the image after i steps. 

Say that p(Q) = 0O, that is 0 a,o = 0c,o = 0o• We show that it must be the case that 

0b,o = 0o. 

Figure 5.6: A portion of the step function showing Θα, Θ& 
and 0C before and after step ; in the plan. Note that if 
Θ0); < Θ*,; < 0 C i i , then0 a J _, < © w . , < 0 c J _,. 
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We show by induction that for all j < i, 

Qa,j < Qbj < Qcj. (5.5) 

Basis: It is true for j — i since Θα •< 0 b ;jj 0C• Assume it is true for j . Then it must be true 
for j — 1 due to the monotonicity of the step function. This is shown graphically in figure 5.6. 
Thus it must be the case that 

0«,o r< ©b.o ή Qc,o. (5.6) 

Since Θα,ο = 0c,o = Θο, it must be the case that ©b,o = Θο• We can argue similarly for other 
gaps to show that all points in the closure will be collapsed by the plan. • 

Lemma 5.2 The maximal subset that can be collapsed with an i-step plan is contiguous. 

Proof. By contradiction. Assume Θ is not contiguous and is the maximal subset that can be 
collapsed with an i-step plan, and let pi be the i-step plan that collapses it. By Lemma 5.1, pi 
collapses C 0 . Since |Θ| < | C 0 | , 0 is not the maximal subset that can be collapsed. 

Lemma 5.3 The set 0,- found by Phase I at stage i is a maximal contiguous subset that can be 
collapsed with an i-step plan. 

Proof. By induction. It is obviously true for ι = 1 by the definition of Phase I. If we assume 
that ©j_i is the maximal contiguous subset, then by the definition of Phase I, Qi will be the 
maximal contiguous subset. • 

Theorem 5.1 Each pi found by Phase I is geometrically optimal. 

Proof. Follows from Lemmas 5.2 and 5.3. • 

5.4.3 Orienting a Part up to Symmetry 

If we let Phase I run until Λ.,• = T, then the associated i-step plan will orient the part up to 
symmetry. Recall from section 4.4.5 that a plan orients a part up to symmetry if Τ is the smallest 
period in the part's transfer function and the plan's set of possible final states includes exactly 
2π/Τ states that are equally spaced on Sl. Equivalently, we can say that a plan orients a part 
up to symmetry if Τ is the smallest period in the part's transfer function and the plan collapses 
some interval of angles, 0, into a single orientation such that | 0 | = T. To see this, note that if 
s(9 + T) = s(0) + T, it follows that for any plan ρ, ρ(θ + Τ) - ρ(θ) + Γ. Consider a 2-step 
plan with actions at angles θ {, θ2 respectively. 

ρ{θ + Τ) = 3{3{Θ + Τ-Θι)-Θ2) 
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= s(s(0-el) + T-e2) 
= s(s(0 - θχ) - θ2) + Τ 

= P(9) + T. 

If a plan collapses all angles in an interval to a single angle, then it will also collapse all angles 
in the interval offset by Γ to a single angle at offset T. The result will be a set of exactly 2π/Τ 
final angles equally spaced on Sl. 

Theorem 5.1 implies that 

Corollary 5.1.1 If Phase I finds a plan to orient the part up to symmetry, it is the shortest such 
plan. 

5.4.4 Plans as Funnels 

Figure 5.7: We can view the forward plan as a sequence of 
"funnels" that maps subsets of state space into each other. 

We can visualize each plan /?,• as a "funnel" that directs all states in Θ,- into Θο (see figure 5.7). 
Note that we can re-position the "mouth" of the funnel, Qi, by rotating the gripper in the world 
frame as part of the first action in the plan. In the previous section we showed that each plan 
found by Phase I corresponds to a funnel with the widest possible mouth. Next we relate the 
size of the mouth to the expected cost of a plan. 
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1. For each subsequence of preimages found by Phase I, compute the 
expected cost of the associated plan: C(pi) = 2π(ι + 1 )/&»•. 

2. Return the plan with minimal expected cost as specified by Equation 
5.3. 

Figure 5.8: Phase Π 

5.5 Phase Π 

Phase Π applies cost and probability models to the geometrically optimal plans to choose one 
with minimal expected cost. We relate geometric optimality with stochastic optimality to prove 
that the algorithm is correct. 

5.6 Correctness 

In section 4.5 we defined a stochastically optimal parts feeding plan to be a plan with minimal 
expected cost. If we assume that all actions have the same cost, then a geometrically optimal 
plan is stochastically optimal. To show this, we must relate the size of a plan's preimage to its 
expected cost. 

Lemma 5.4 For a uniform prior probability distribution, if an i-step plan is geometrically 
optimal then it is also stochastically optimal. (We relax the first condition in Appendix F). 

Proof: Let pi be a geometrically optimal plan with preimage of length h. When the initial 
probability distribution is uniform, then the probability that plan pi will succeed is ρ = Λ./27Γ, 
and the expected cost for the plan is C(pi) = (i + l)/p. 

Let p\ be any other plan with preimage of length h'. Note that h! < h, since h corresponds 
to a geometrically optimal plan. The probability that plan p\ will succeed is p' = h'/2ir. Since 
h' < h, C(p\) = (i + l)/p' > C(pi). Thus there is no other plan that has lower expected cost 
and plan pi is stochastically optimal. • 

Theorem 5.2 The algorithm finds a stochastically optimal plan. 

Proof: Follows from Theorem 5.1 and Lemma 5.4. 
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Note that the position of the mouth in the world frame is irrelevant when the prior distribution 
is uniform. However, in cases where the prior distribution is non-uniform, we want to position 
the mouth so as to capture as much probability as possible. Appendix F discusses how the 
algorithm can be generalized to cases where the prior is non-uniform. 

5.7 Completeness 

To show that the algorithm is complete, that is, that it finds a stochastically optimal plan for 
any polygon, we must show that for any polygon, we can continue to grow the preimage until 
Phase I terminates. It is sufficient to show that we can continue to grow the preimage until 
hi = T, or equivalently, 

Theorem 5.3 For any polygonal part, we can always find a plan to orient the part up to 
symmetry. 

Proof: As described earlier, any polygonal part will generate a squeeze function where all step 
widths have positive measure and s(6 + T) = s(0) + T. All values are taken modulo 2π. We 
prove the claim by showing that for any squeeze function, we can always find a sequence of 
sets < 0o,©i,...,0fc > such that: the first set contains only a single point, each set has an 
image that is smaller than the previous set, and the last set corresponds to a period of symmetry 
in the step function. 

The trick is to show that for any set we can always find a way to generate a larger set (unless 
the set corresponds to a period of symmetry in the step function). Since we are primarily 
concerned with the size of the sets, let hi = |Θ;|. 

Let the first two sets Θο, Θι correspond to any step in the squeeze function. That is, all 
points in interval 0 j map into the single point Θο. As described earlier, we say that Θο is the 
preimage of Θι. We must now show that we can find a set larger than Θι whose image is no 
larger than Θ ι. Call this Θ2. Then we need a set larger than Θ2 whose image is no larger than 
Θ2, and so on. We want to show that for any squeeze function and any h, 

Either we can find a larger preimage: 

30ts{e + h)-a{9)< h, (5.7) 

Or h is a period of symmetry in the squeeze function: 

Vf,*(0 + fc) » *(0) + Λ, (5.8) 

where the quantifiers range over the interval [0, Γ). 
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To understand formula 5.7, consider that we've reached a point in the algorithm where the 
current set is Θ of size h. Formula 5.7 says that there is some set, [θ. θ + h), equal in size to 
Θ, whose image, [ s(0), s(B + h) ), is strictly smaller than Θ. This means that we can expand 
[θ, θ + h) to get a set larger than Θ whose image is equal to Θ. We can also interpret this with 
reference to figure 5.4. Formula 5.7 says that we can always find a position for the lower left 
hand corner of the box such that the squeeze function enters on the left edge of the box and 
exits on the right edge. 

To show that for any squeeze function and any h, either formula 5.7 or formula 5.8 must 
hold, consider the integral of the function s(6 + h) — s{6) — h over the domain [0, Γ). 

/ [s(6 + h)~ s(0) - h)d6 = / β(θ)άθ - / 3(θ)άθ - hT 
JO Jh Jo 

rT fh fT+h rT 
= + / s(6)d$ - / β(θ)άθ + / s(6)M - / β(θ)άθ - hT 

Jo Jo JT JO 
rh fT+h 

= - / s($)d$ + / β{θ)Μ - hT 
Jo JT 

= - I s(0)d0 + f [s(6) + T]M - hT 
Jo Jo 

= - f s(0)d0 + / β(θ)άθ + hT-hT 
Jo Jo 

= 0. 

Since this integral is zero, then by the mean value theorem, either the function is uniformly 
zero (formula 5.8, i.e. h = T) or there is some point in the domain where the function is less 
than zero (formula 5.7). 

Hence we can always continue to find larger sets until we reach a period of symmetry in the 
step function. We have shown earlier that we can transform this sequence of sets into a plan to 
orient the part up to symmetry. This proves the claim. • 

5.8 Worst-Case Computational Complexity 

We define the complexity of the algorithm as a function of the geometric complexity of the 
input, in this case the number of part vertices, n. We neglect the numerical complexity of 
representing vertices and angles as rational numbers. 

Step 1 of Phase I, computing the squeeze function, can be performed in time 0(n log n) (see 
Appendix D). Steps 2 and 3 of Phase I run in time 0(n). To see this, note that we only need to 
consider positioning the box flush with each step and there are 0(n) steps. We only need 0(n) 



5.9. IMPLEMENTATION 71 

iterations of Step 3, since h\ corresponds to the largest single step and there are no more than 
2n steps in the transfer function, h\ > 2π/2η and so Ν is Ο (π) as stated in Theorem 4.1. 

Phase Π runs in time 0(n), since there will be almost 0(n) plans and it takes time 0(1) to 
compute the expected cost for each plan. 

Theorem 5.4 The algorithm runs in time 0(n2) and finds plans of length 0(n). 

See Appendix F for the complexity when the algorithm is modified to handle non-uniform 
prior densities. 

As stated earlier, if we modify the termination condition to stop only when hi = T, the 
algorithm will find apian to orient the part up to symmetry using only part geometry. We call this 
the purely geometric algorithm. Although the 0(n2) time bound applies to the stochastically 
optimal plan, the best we have been able to show is that the purely geometric algorithm runs in 
time 0(n3): there are 0(n) steps in the squeeze function and so there are only 0(n2) intervals, 
so the required number of iterations of Step 3 is 0(n2). 

Conjecture 5.4.1 The purely geometric algorithm finds apian to orient the part up to symmetry 
in time 0(n2). 

5.9 Implementation 

We implemented the algorithm in Common Lisp using exact (rational) arithmetic to express 
vertices and angles. In the examples below, c = 1. For 1000 random parts, we compared the 
plans generated by the algorithm to the plans found by exhaustive breadth-first search. In all 
cases where the exhaustive search was able to run to completion, the plans found by the two 
planners were equivalent. Examples of the geometric analysis are shown in Figures 5.9 through 
5.11. 

5.10 Discussion 

In this chapter we developed a backchaining algorithm to find stochastically optimal parts-
feeding plans assuming that the prior probability density is uniform. We prove that the 
algorithm is correct by relating stochastically optimality to geometric optimality and show 
that the worst-case computational complexity of the algorithm is Ο (π2), where π is the number 
of edges on the part. Finally we show that the algorithm is complete for all polygons by showing 
that we can orient any polygonal object up to symmetry in its transfer function. In Appendix F, 
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Figure 5.9: Geometric analysis of 4-sided part (4gon), showing 
diameter and squeeze functions. The horizontal bars show the 
preimage at each stage. The corresponding plan is shown in 
Figure 4.6. 
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Figure 5.10: Geometric analysis of 5-sided part (5gon). 
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Figure 5.11: Geometric analysis of 9-sided part. 
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we explore how the algorithm can be generalized to cases where the prior probability density 
is non-uniform. 

The analysis in this chapter relies on the assumption that action space can be described by 
cyclic shifts of a transfer function, s : Sl χ S1, that is piecewise constant and monotonically 
non-decreasing on a closed interval. In addition to the class of squeeze actions the class 
of push-grasp actions meet these criteria. Push-grasp actions are explored in Appendix E. 
Perhaps we can find other classes of actions that meet these criteria. It would be interesting 
to extend this algorithm to actions that are not deterministic, such as the class of fence-push 
actions considered by [Peshkin and Sanderson, 1988]. In the next chapter we consider the class 
of tray-tilting actions proposed by [Erdmann and Mason, 1986]. Since these actions are not 
deterministic, we use forward search rather than the backchaining algorithm to find optimal 
plans. 



Chapter 6 

Empirical Model of Control Uncertainty 

When the mechanics are non-deterministic...it will be necessary to assign probabili­
ties to the alternative events. This might be done empirically...[Taylor, Mason, and 
Goldberg, 1987] 

6.1 Introduction 

We now turn our attention to control uncertainty - where the outcome of an action cannot be 
determined exactly. In this chapter we derive a stochastic control model based on empirical 
observations. (In Appendix C, we consider control uncertainty in the context of pushing 
with friction where we assume a uniform distribution to derive a stochastic control model 
analytically.) 

Control uncertainty arises from many sources including friction, backlash, dynamics, impact, 
and sampling effects [Goldberg and Pearlmutter, 1988]. To model such effects, we often assume 
that uncertainty can be modeled with a one- or two-parameter probability model. For example, 
when control uncertainty can be characterized by zero-mean additive Gaussian noise, then for 
linear systems with quadratic cost functions, it can be shown that the optimal plan depends only 
on the mean of the Gaussian distribution [Gelb, 1986]. When we don't know the parameters 
of the probability model, we can sample the physical system to estimate the parameters. 

In this chapter we apply this approach to a different mechanism for feeding parts. We use the 
experimental setup developed by Alan Christiansen in our laboratory at Carnegie Mellon. He 
is interested in machine learning; how can a machine automatically generate a model of robot 
control based on empirical observations? [Christiansen, 1991]. To collect data, he developed a 

°Parts of this chapter have appeared in [Christiansen and Goldberg, 1990]. 
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system including robot arm and CCD camera to automatically perform experiments and record 
the results. In this chapter we derive a stochastic control model based on this data and use it to 
generate optimal plans. 

6.2 The Domain: Tray-Tilting 

Figure 6.1: Three side views of the robot holding the tray. In 
the center the robot tilts the tray allowing gravity to move the 
part. 

We consider aproblem in robot manipulation where our objective is to orient a two-dimensional 
part in a tray though a sequence of tilting motions as in Figures 6.1 and 6.2. Tray-tilting has been 
studied before, both analytically [Erdmann and Mason, 1986, Taylor, Mason, and Goldberg , 
1987] and empirically [Christiansen etal, 1990] 

The state is the position and orientation of a polygonal part that is free to slide in a square 
tray. Each action is defined by an angle at which the robot tilts the tray, causing the object to 
slide and roll into a stable state along some wall of the tray. We uniformly quantize state and 
action spaces. We classify stable states of the rectangular part into 12 equivalence classes as 
shown in Figure 6.2: the part can be in one of the four corners or the four sides and it can be 
oriented either horizontally or vertically. These are the canonical states of the system. The tray 
is initially held orthogonal to the gravity field. Tilting the tray is performed by rotating the tray 
about an axis in the plane of the tray, waiting for a fixed time until the object settles, and then 
returning the tray to its original orientation. Tilting actions are specified by the direction of 
the steepest vector pointing into the gravity field. We consider twelve tilt angles at 30 degree 
increments. 

Figure 6.3 gives an example of control uncertainty. Although the tilting direction fairly 
repeatable, the true initial position and orientation of the part may vary quite a bit within 
canonical state 7. That is, our model of the state space cannot distinguish between positions 
of the part within canonical state 7. This confusion might be termed "model aliasing" [Shafer, 
1990]. 
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Figure 6.2: Looking down into the tray. The rectangular part 
is shown in its 12 canonical states. The arrows indicate the 12 
tilting actions. 

1 

i 

, 

Figure 6.3: On the left is the tray in its initial state with the 
rectangular part in state 7. On the right is the tray after tilting 
the tray so that the arrow corresponding to action 1 points into 
the gravity field. After observing multiple trials, we conclude 
that there are three possible outcomes: the final state is either 
1,3, or 12. 
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Since we can't predict the outcome of actions exactly due to model aliasing, we propose a 
probabilistic model of control. We assume that actions have the Markov property, i.e. where 
the mapping depends only on the current hyperstate. For each action and initial state, we want 
a probability distribution over the set of final states. This can be represented with a stochastic 
transition matrix for each action as described in Chapter 2. Given the initial state of the system 
and a desired final state, we want to find an open-loop sequence of tilting actions that will reach 
this state with maximal probability. 

Where do we get the numbers for the transition matrices? The effects of friction and impact 
in this domain make it particularly difficult to derive these matrices analytically. Hence we 
estimate the matrices through observation. 

6.3 Developing a Stochastic Control Model from Observations 

Given a set of observations from physical experiments, what is an appropriate stochastic model 
of actions? We represent each tilting action c with a stochastic transition matrix, P a , where pij 
is the (conditional) probability that the system will be in state j after action a is applied to state 
i. 

In the physical experiments, each observation consists of an initial state, a tilting action, 
and a final state. For each tilting action a, consider the matrix XQ, where Xij is the number of 
observations with initial state i and final state j . Given an observation matrix Xa, how do we 
generate a stochastic transition matrix PQ? 

One idea is to use the observed frequencies (the maximum likelihood estimator). The 
difficulty is that we haven't necessarily observed the outcome of every pair of initial states and 
actions; for such pairs the frequency is undefined. 

6.3.1 Bayesian Estimation of Multinomial Parameters 

Consider an experiment where the outcome is uncertain. We might treat the outcome as a 
random variable with some probability distribution. Call this the state distribution. Say this 
distribution has a finite set of parameters. When we don't know the parameters, one approach 
is to treat the vector of parameters as a second random variable with its own probability 
distribution. Call this the parameter distribution. We use trials of the experiment to estimate 
the mean of the parameter distribution. As the mean of the parameter distribution converges to 
the true value of the parameters, we are better able to predict the outcome of future experiments. 
In this section we review a Bayesian method for estimating the parameters of a Multinomial 
distribution based on observations. 
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Let χ be a vector of observed data. The prior probability density of the data is / (χ | ρ), where 
ρ is a vector of parameters for the distribution. That is, we can use ρ to estimate the probability 
of x. But we're not certain about the value of p. In Bayesian inference we turn /(xjp) around 
to get a probability distribution for the parameters given the data: 

f ( - ν / ( x | p ) / ( p ) (f. . V 
/ ( P F ) = — τ γ \ — • V6•1) 

where /(p) is the prior probability density for ρ and /(x) is a normalizing factor: /(x) = 
/f(x|p)f(p)dp. Note that we assume here that /(x) is non-zero. 

In Bayesian estimation we estimate the parameter vector by minimizing some loss function 
(usually mean squared error). A Bayesian estimator, p(x), is a function that maps the data into 
an optimal estimate of p. 

There are three parts to a Bayesian estimation problem: a prior distribution for the data, a 
prior distribution for the parameter vector, and a loss function. We consider a specific problem: 
estimating the parameters for a multinomial distribution. 

A Prior Distribution for the Data: the Multinomial 

Our initial predictions of the data will be based on the multinomial distribution, which is the 
multivariate counterpart to the binomial. 

Consider an urn filled with balls of k different colors (k > 2) where the proportion of balls 
that are of color i is p». Note that pi > 0 and £ Pi = 1. Now suppose that we draw η balls 
with replacement. Let X; be the observed number of balls of color i. Then the random vector 
X = (Λ'ι,..., Xk) has a multinomial distribution with param eters n a n d p = (p\,---,Pk), 

/ ( x | n , p ) = — ^ — P V - P T - (6.2) 
Xl\...Xk\ 

For example, if there are 3 red balls, 2 black balls, and 5 white balls and we draw 2 balls 
with replacement, the probability of drawing one red and one black ball is 

/[(1,1,0)!2,(.3,.2,.5)] = J I L j l i 1 . * = 0.12 (6.3) 

Note that the expected value for any dimension of the random vector is E(Xi) = npi. 
Similarly, Var(Xi) = npi(l — pi) and Cov(Xi,Xj) = —npiPj. 

Our predictions about the data will be based on a multinomial distribution with parameter 
vector p. We don't know the value of ρ exactly, but we can model this uncertainty with another 
probability distribution. 
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A Prior Distribution for the Parameters: the Dirichlet 

Let the parameter space, Ω, be the set of vectors {p.pi > 0 and Σ Pi = 1}• A convenient 
class of probability distributions on this space is the Dirichlet, the multivariate counterpart to 
the beta distribution (see Appendix G). 

A random vector ρ = (pi, ...,?*) has a Dirichlet distribution with parametric vector a = 
(<*!,..., ctfc), where a; > 0. For any point in Ω, 

L{al)...L{ak) 

where αο = Σ αί, and the Gamma function is the continuous counterpart to the factorial. 

Note that the expected value along any dimension of the random vector is Ε(ρή = «i/oo. 
Similarly, Var(pi) = a^ao - α;)/α$(αο + 1) and Cov(pi,pj) = -α,•α,•/αο(αο + 1). 

The Dirichlet is a continuous distribution over a (fc — l)-dimensional simplex, so it can be 
hard to visualize. See Appendix G. We can represent a uniform distribution over the parameter 
space by setting αϊ = ... = α* = 1. 

A Posterior Distribution for the Parameter: the Dirichlet! 

Fortunately, the Dirichlet is a conjugate family for samples from a multinomial distribution. 
That is, after sampling the data, the posterior distribution for ρ will also be a Dirichlet. From 
equation 6.1 we see that the posterior distribution is proportional to the product of a multinomial 
density and a Dirichlet density. 

/ ( P | X ) « /(x|p) /(p). (6.5) 

The multinomial density has the form 

/(x|p)<xP*'...p**, (6.6) 

and the Dirichlet density has the form 

/(p)oc ρ Γ ^ ρ Γ " 1 - (6-7) 

Multiplying, we see that the posterior distribution has the form of a Dirichlet, 

/(pWocpr'^-1..^^"1• (6-8) 

That is, the posterior distribution for ρ after observing vector χ is a Dirichlet distribution 
with parametric vector α = (<*] + χι, ...,α* -f Xk)• 
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A Loss Function: Squared Error 

We now want to use the posterior distribution for the parameter to find the "best" estimate of 
the parameter. We would like our estimate to be close to the actual value of the parameter. 
We can formalize this by choosing a value for the parameter that minimizes the mean square 
difference between the estimate and the true value. 

Minimizing Mean Square Error 

Suppose Ρ is a random variable with mean μ. We want to predict the value of an observation. 
One way is to find the value ρ such that the Mean Square Enor (MSE), E[(P — p)2], will be a 
minimum. For any value of p, 

£ [ ( Ρ - ρ ) 2 ] = £ [ ρ 2 ] - 2 ρ μ + Ρ

2 . (6.9) 

To minimize this quantity, we differentiate with respect to p and set the result equal to zero; 
the value of p that gives a minimum is the mean, p = μ. So for any distribution the MSE 
estimate is the mean. 

See [Berger, 1985, Section 4.4.2] for a discussion of alternative loss functions. For example, 
it can be shown that the Bayesian estimator for the absolute enor loss criterion is the median 
of the posterior. 

A Bayesian Estimator for the Multinomial 

We are now ready to put together the three pieces: If the prior distribution of the data is a 
multinomial with parameter ρ and the prior distribution of ρ is a Dirichlet with parametric 
vector a = (α ],..., a*.), then the posterior distribution of ρ after observing χ is a Dirichlet with 
parametric vector α = (aj + xx,..., a* + Xk). For the mean square enor loss criterion, then the 
Bayesian estimator is the mean of the posterior, 

*« = £ χ * . (6-10) 

The variance associated with this estimate is 

VaripifxJJ = — ; ΓΤ7 - τ — . (6-1 U 

^ t V " (ao + n)2(ao + n + l) v ' 

Note that the variance decreases as sample size, n, is increased. 
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The Maximum Likelihood Estimator for the Multinomial 

The Bayesian estimator is not the only way to skin a cat. The maximum likelihood approach 
is to estimate ρ by finding the value of ρ that maximizes the function /(x,p), where χ is the 
observed vector. That is, what value of ρ makes it most probable that we observe what we 
observed? To find the most likely value, we differentiate /(x|p) with respect to ρ and set the 
result equal to zero. 

It can be shown that the maximum likelihood estimator (MLE) for the parameter of a 
multinomial distribution after observing a vector of η outcomes is 

A(x) = - • (6.12) 

Maximum Likelihood vs. Bayes' 

The maximum likelihood method does not depend on either a prior distribution of ρ or on 
the loss function. However the MLE is not always unique, e.g. for samples from a uniform 
distribution [DeGroot, 1975, p288] and it is undefined when there are no observations: π = 0. 
When the sample size approaches infinity, it can be shown that both the MLE and the Bayes' 
estimators converge to the true parameters of a multinomial distribution. 

Bayes' Estimator for Tilting Actions 

For the tray-tilting problem, we use the following estimator for each tilting action corresponding 

to P a, 

few=rij+Xii» <6•13) 
where the numbers a, j f or i = 1,2,..., 12 are Dirichlet parameters based on a priori assumptions 
and the i ^ correspond to elements fo the observation matrices. 

We could set a.ij = 1.0 to represent the prior assumption that the conditional probability 
distribution is uniform: after an action is applied, the system is as likely to be in any one state 
as in any other. For the tray tilting problem, we set a^ = .01 to represent our prior assumption 
that the conditional probability distribution for each action will be skewed toward some subset 
of states. See Appendix G for more on the Dirichlet parameters. 

6.3.2 Physical Observations 

To build a model of tray-tilting actions, the robot performed a sequence of trials. The part was 
initialized in some position and orientation in the tray. This initial state was detected by the 
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Figure 6.4: Here is the transition matrix, Pi, associated with 
tilting the tray so that the vector 1 is pointing into the gravity 
field. Row 7 gives the probabilities associated with each final 
state, i.e. the value in element pjt ι says that if the part is initially 
in state 7, its probability of moving to state 1 is 0.7401. 

vision system. The robot then generated a random number from zero to twelve and tilted the 
tray along the corresponding azimuth. The initial state, action and final state was recorded by 
incrementing the corresponding element in an observation matrix. Say the part was initially 
in state 5, the robot randomly chose action 2, and the final state was 3. The system would 
increment element X53 in matrix X2. 

We assumed that each observation was independent. The robot performed 2000 trials with 
the physical robot system to yield the Xa matrices '. We used Equation 6.13 to generate the 
corresponding stochastic transition matrices. A typical transition matrix is shown in figure 6.4. 

6.4 Finding Stochastically Optimal Plans 

For the tray tilting task we are given a known initial state and desired final state. In this case 
the initial hyperstate is a vector with a 1 corresponding to the initial state and zeros elsewhere. 
Each action (and hence plan) defines a final hyperstate using the stochastic transition matrices 
described in the previous section. To compare plans, we compare their final hyperstates. 

We express our desire for a particular outcome with a cost function on the set of hyperstates. 
Typically, we assign a cost to individual states and define the cost of a hyperstate to be the 

1Empirical data used in this chapter was generously provided Alan Christiansen. 
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weighted average (expected cost) of its components. For the tray tilting task the cost function 
depends on the desired final state. Say we want to reach state i. Let 

C(X) = - P „ 

so that the minimum cost hyperstate corresponds to the highest probability that the system is 
in state i. There may be more than one minimum-cost hyperstate. Note that this cost function 
does not depend on the number of actions. 

To find the best plan, we consider all plans and find one with minimum cost. The difficulty 
is that there is an infinite number of plans to consider. We set a cutoff threshold depending on 
how much time we have and how fast we can evaluate plans, which in turn depends on how fast 
we can multiply matrices. Say we consider all plans up to some length limit, k. Let η be the 
number of states and m be the number of actions. There are mk k-step plans. We can visualize 
the search for an optimal strategy as proceeding through a tree, where the root node contains 
the initial hyperstate and has a branch for each action in the action space. Each branch leads 
to a new hyperstate which in turn has branches for each action. We expand the tree to some 
fixed depth (horizon) and select the optimal path. To generate each node in the tree we must 
perform 0(n2) multiplications. The total time for finding the best A;-step plan is 0{n2mk). In 
the present case we considered all plans with length < 3 and found a plan with minimal cost. 
With 12 actions available at each stage, a 3-ply search considers 123 = 1728 hyperstates. 

For twelve possible tile configurations, there are 144 pairs of configurations defining start 
state and goal state. Let us refer to each of these pairs as an instance of the planning problem. 
There are 132 non-trivial instances. (The twelve instances with start state and goal state equal 
to each other are trivial, since a null plan always solves the problem.) We ran the planner on 
each of the 132 non-trivial instances. Table 6.1 lists some of the resulting plans. 

The planner was written in Common Lisp and run on a Sun 3/280. Over the 132 instances, 
the planner took an average of 62 seconds real time per instance, with a standard deviation of 
2.8 seconds. The average length of plans was 2.4 tilts with a standard deviation of 0.75 tilts. 

To test the resulting plans, we executed the last two instances of Table 6.1 on the robot in 
400 trials. The first plan performed very close to the predicted probability. The second plan 
performed slightly better than predicted. The prediction may have been low because there 
were not enough observations to produce an accurate transition matrix. In [Christiansen and 
Goldberg, 1990], we compare these plans against plans generated by an alternative planning 
algorithm. 

6.5 Discussion 

In previous chapters we studied the problems of grasping and orienting parts with a parallel-jaw 
gripper. In this chapter we study an alternative method for orienting parts: tray-tilting. We use 
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Instance 
Start State 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Goal State 
3 
2 
4 
5 
6 
7 
9 
8 
10 
11 
12 

8 | 1 | 

2 
2 

1 
3 

Plan 
(4) 
(9 7 3) 
(5) 
(6 2 7) 
(4 7 4) 
(9 6) 
(1010 7) 
(9 7) 
(9) 
(9 1) 
(10 2 10) 

(5 112) 

(10 2 3) 
(114) 

Estimated Probability | 
.98 
.97 
.97 
.98 
.98 
.97 
.97 
.98 
.99 
.98 
.97 

.62 

.67 

.98 

Table 6.1: Sample plans. 

experimental data to estimate stochastic transition matrices and then use these matrices to plan 
stochastically optimal tray-tilting strategies. 

This chapter serves several purposes. Tray-tilting gives another example where control 
uncertainty arises in a manipulation problem. Also, since control uncertainty is particularly 
difficult to model analytically due to friction and dynamics, the tray-tilting problem justifies 
the use of empirical data to estimate the control model. Last, tray-tilting illustrates another 
application of the stochastic framework for manipulation planning. 

Start State 
2 
2 

Goal State 
3 
1 

Plan 
(114) 
(10 2 3) 

Estimated 
.98 
.67 

Measured 
.99 
.85 

Table 6.2: Summary of 400 execution trials for two plans show­
ing estimated and measured success ratios. 



Chapter 7 

Discussion and Future Work 

We have formalized a stochastic framework for robotic manipulation planning and developed 
two examples. In this chapter we discuss limitations and extensions to the stochastic framework. 

7.1 Limitations of Stochastic Planning 

Two common objections to stochastic methods are (i) "There is little justification for the required 
probability and cost models." and (ii) "It is impractical to find optimal solutions." We cannot 
dismiss either of these objections. But there is hope. 

7.1.1 "Probability and Cost Models are Ad-Hoc. >» 

If the probability and cost models used for stochastic planning are not well founded, then we 
certainly can't expect much from the resulting plans: garbage in, garbage out. One aim of this 
thesis is to illustrate how probability and cost models can be justified in geometric manipulation 
problems. 

One advantage of guaranteed plans is that we can avoid making probabilistic assumptions. 
All we need to specify is the set of possible states that can result from an action. State sets may 
be simpler to express than probability distributions, especially when there is no closed-form 
expression for the probability distribution that results from an action. When guaranteed plans 
exist, we can consider a hybrid approach that uses a real-valued cost metric to rank guaranteed 
plans. The best plan might be called a minimax plan, in that it minimizes the worst-case 
cost. For example, a cost model is implicit when breadth-first search is used to find a shortest 
plan. But for cases where there is no guaranteed plan, however, probabilistic models may be a 
necessary evil. 

87 
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In this thesis we derived prior probability models analytically from part geometry (chapters 
3 and 4) and empirically using observations of system behavior (chapter 6). We also related cost 
to the probability of success for iterative plans. Empirical methods can also be used to derive 
cost models. Automated methods for building probability and cost models from empirical 
observations may be considered as examples of machine learning [Narendra and Thathachar, 
1989]. 

7.1.2 "Stochastic Planning is Intractable." 

The brute force approach to stochastic planning is indeed intractable. For an η-dimensional state 
space, each action is represented with an η χ η matrix, and so we require 0(n2) multiplications 
to determine the result of any single action. If there are m actions, the brute force approach 
requires 0(mdn2) time to consider all plans with d or fewer actions. We note here that the 
brute force approach can be trivially parallelized. 

There is often a tradeoff between planning time and plan quality: in general the longer we 
have to plan, the better plans we find. We can reduce planning time by accepting the first plan 
that achieves some cost threshold. That is, rather than looking for an optimal plan, we look for 
a satisfactory plan. There is some evidence that humans plan in this manner [Simon, 1955]. 
A way to speed up this type of planning would be to search probabilistically, for example by 
choosing the next node randomly [Barraquand and Latombe, 1990]. Such heuristics might 
work well when there are many satisfactory plans. 

Christiansen and Goldberg [1990] compared exact and heuristic methods for stochastic 
planning in the tray-tilting domain. The heuristic used a shortest-path algorithm to minimize 
a lower bound on the probability that a plan would reach the goal. While the exact method 
requires computation time exponential in the size of the action space, the heuristic method runs 
in polynomial time. When we compared methods, we discovered that there was little difference 
in plan quality. It would be interesting to apply the shortest-path heuristic to other domains. 

Another approach is to incorporate planning time into the cost function to optimize the 
tradeoff between plan time and execution time [Kanazawa and Dean, 1989, Etzioni, 1989, 
Tan, 1990]. A similar tradeoff exists in the design of optimizing compilers where time spent on 
optimizing code must be balanced against execution savings. When plans must be generated on­
line, we are often interested in the best plan that can be found before some deadline [Drummond 
and Bresina, 1990]. Plan time is less critical if planning is done off-line. This is especially true 
in a factory environment where we can amortize plan time over thousands of execution cycles. 

In this thesis we demonstrated an efficient algorithm for finding stochastically optimal plans 
in the special case where the set of actions can be described with cyclic shifts of a piecewise 
constant monotonic transfer function. 
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7.2 Future Work: Stochastic Plans with Sensors 

Recently, Mason and his colleagues have begun to investigate the trade-offs between 
(i) a sequence of [open-loop actions] such as allowing a part to collide with the sides 
of a tray, and (ii) using a sensor to constrain the configuration of the part. Such 
analyses have a great potential throughout robotics. The heart of the problem is to 
relate the constraint on the state of an object as a result of a sensing step with the 
result of an [open-loop action]. [Brady, 1989, italics mine.] 

In chapter 1 we identify two methods for reducing uncertainty: sensing and open-loop 
actions. The thesis concentrates on the latter, showing that expected performance can be used 
as a real-valued metric for evaluating open-loop plans. What about closed-loop plans, that is, 
plans that use sensors? 

In this section, we consider how the stochastic planning framework can be extended to 
planning with sensors. Recall that a sensing operation transforms a prior probability distribution 
into a posterior probability distribution. This is also the way we model open-loop actions. Thus 
we can compare the effect of receiving sensory data with the effect of an open-loop action based 
on their respective posterior hyperstates. Since we don't know the sensor data at plan time, we 
can compute the hyperstate for each possible sensor value and take a weighted average to find 
the expected cost of sensing vs. the expected cost of an action. In this way we can compare 
sensing with acting. 

7.2.1 Sensor Data Transforms a Hyperstate 

Consider a system with finite state space, Θ. Since we don't know the exact state of the system, 
we describe it with a hyperstate, a probability distribution on Θ that gives Ρ(θ) for each state 
θ ε Θ. Now consider a sensor that can return data, χ G A', where A' is a finite set. The 
probability that χ will be measured, given that the system is in state Θ, is given by a conditional 
probability, Ρ(χ\θ). This allows us to represent imperfect sensors, where the sensed value may 
be corrupted by noise. Now if we apply the sensor to the system and measure i , what is the 
new hyperstate? 

Using Bayes' Theorem, the new hyperstate, also known as the posterior distribution given 

data x, is 

where m(x) is a normalizing factor: 

τη{χ) = ΣΡ(χ\θ)Ρ{θ). (7.2) 
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For a given hyperstate, m(x) gives the probability that χ will be measured; m(•) is known as 
the marginal distribution. 

We can implement Bayes' Theorem with matrices. As in chapter 2, we represent the initial 
hyperstate with a vector λ. We represent the conditional probability distribution P(x Θ) with a 
diagonal matrix, P x such that 

Ρ{χ\θί) ifi = j 

0 otherwise 

The hyperstate resulting from measuring χ is APX, normalized so that its elements sum to 1.0. 

7.2.2 Plans with Sensors 

Figure 7.1: Representing a single-step sensor plan with a tree. 

Consulting a sensor introduces branching into a plan, since the course of action will depend 
on the data returned by the sensor. A sensor plan can be represented as a tree where each node 
represents a hyperstate (figure 7.1). The tree has branches for each value of sensor data. A 
complete plan specifies a course of action for all possible values of sensor data 

When treating open-loop plans, we compared plans based on their final hyperstates. For 
plans that use sensors, the final hyperstate depends on the sensed data, which we don't know 
at plan time. If we compute the cost for each possible hyperstate, however, we can use the 
marginal probability distribution to compute an expected cost for the plan. Thus we can 
compare closed-loop plans based on expected cost. 

7.2.3 Example: Sensing Gripper Diameter 

We can incorporate sensing in the parallel-jaw parts feeder by including a sensor that returns 
gripper diameter when the jaws are closed around apart [Taylor, Mason, and Goldberg , 1987]. 
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Say we have a hyperstate describing the orientation of the part in the gripper. If we sense the 
gripper diameter, what is the resulting hyperstate? 

If the sensor is perfect, we can determine the diameter for each state using the diameter 
function. Measuring value x, we could find the set of possible states using the inverse of the 
diameter function. Note that the diameter will not uniquely determine the state of the system, 
since the inverse of the diameter function is not single-valued. 

Figure 7.2: Probability density of sensor data χ given jaw di­
ameter d. 

It is more realistic to treat the sensor as imperfect. That is, for a given state of the part, the 
sensor may return a range of possible values, where the exact value depends on jaw pressure, 
backlash, and the elasticity of the jaw surfaces. Let us model sensor noise with a probability 
distribution that depends on the true state of the system. To apply equation 7.1, we need to 
know Ρ(χ\θ) for each combination of data and state. That is, if the true diameter of the part in 
the gripper is d, then the sensor data might have a probability density as shown in figure 7.2 

When planning, we consider a finite set of sensor outcomes. Say the sensor returns b bits 
of useful data, giving 2b possible sensor outcomes. If the true diameter is d, we can assign 
probability to each outcome as shown in figure 7.3. Each stable orientation of the part in the 
gripper corresponds to a diameter d{6). For each such diameter and each value of x, we can 
compute Ρ{χ\θ) using a Gaussian noise model to yield a set of matrices {Ρχ,,Ρχ,,Ρ^,Ρ^}. 
We could also determine the matrices empirically by sampling sensor data as we repeatedly 
grasp the object. 

Consider a one-step iterative plan for orienting the part that consists of grasping the part 
with the jaws, consulting the diameter sensor, and, based on the sensor data, aligning the part 
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Figure 7.3: A 2-bit sensor returns one of 4 outcomes: 
xii%2i xi, x4- If the true diameter is d, the probability of each 
sensor outcome can be determined by integrating the probability 
density over the associated range of sensor inputs. 

over a filter that accepts one orientation and rejects all others. Let λ 0 be a prior probability 
distribution the set of stable part orientations when the jaws are closed around an object. We 
now consult the diameter sensor. Say it returns X{. Then the posterior probability distribution 
is Xi = λ0Ρχ,. As in section 4.4.6, we can identify a most-likely orientation in this hyperstate 
as 

Γ(λ,) = argmaxP(0), (7.4) 

where Ρ(θ) is the probability of θ in hyperstate Xi. After consulting the sensor, the gripper 
rotates to align the part over the filter so that only parts in orientation θ* (λ,-) are accepted. Note: 
due to sensor noise, there is still some probability that the part is not in orientation Θ*(Χ{). 

Let pi be the probability that the part is in orientation θ'(Χί). If the sensor returns value Xi, 
it will take 1/pi iterations until state θ'(λί) is achieved. As in chapter 4, we relate the cost of 
actions to time. Say the time required to grasp, consult the sensor, and orient the part based on 
the sensor value is one time unit. Then the expected cost for orienting the part is 1/p,• units, 
assuming that the sensor returns value i t . 

At plan time, we don't know what value the sensor will return. But we can use the marginal 
probability distribution defined in equation 7.2 to determine the probability of each sensor 
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outcome. The expected cost for the one-step sensor plan is then 

£ = £ * • (7.5) 

Rather than submitting the part to the filter immediately after sensing, we could perform 
a sequence of open-loop grasping actions that depends on the sensor data to increase the 
probability of some state before testing part orientation with the filter. 

7.2.4 Plans with Sensors and Actions 

We can use both sensors and open-loop actions in one plan. We showed that sensor data 
can be combined with a prior hyperstate to yield a posterior hyperstate. We can treat the 
posterior hyperstate from each sensor value as the initial hyperstate for a new plan. Each of 
these plans becomes a subplan in a plan that consults the sensor and then executes the subplan 
corresponding to the measured sensor value. The expected cost for the larger plan can be 
determined by computing the expected cost for each subplan and weighting the expected costs 
by the marginal probabilities associated with each sensor value. 

Alternatively, we can consider a plan that executes a sequence of open-loop actions and 
then consults a sensor. The expected cost of such a plan can be computed as if the hyperstate 
resulting from the sequence of actions is the initial hyperstate in a one-step sensor plan. The 
expected cost for any sequences of sensing and actions can be computed recursively. 

When planning with only open-loop actions, we prefer actions that cause the probability 
distribution to converge. When sensors are available, we may prefer actions that cause the 
distribution to diverge so that we can improve the ability of a subsequent sensing operation to 
discriminate between possibilities. 

7.2.5 Planning with Sensors 

When planning, we want to compare plans. As in the previous subsection, consider plan A that 
senses first and then that executes a sequence of open-loop actions. Now consider plan Β that 
executes a sequence of open-loop actions and then senses. Which is better? The real-valued 
metric of expected cost can be used to compare such plans. 

In subsection 7.2.2, we noted that a sensor plan can be viewed as a tree with branches 
corresponding to each sensor value. Each such tree can be viewed as a subtree in a larger tree 
that represents all possible plans (figure 7.4). There are two types of branches in the large tree: 
branches corresponding to actions and branches corresponding to sensing. Recall that sensor 
branches come in bundles, since each branch corresponds to a sensor value; if we use a sensor, 
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Figure 7.4: A tree that represents all possible plans. 

then we must identify a subplan for each branch in the bundle. We can differentiate between 
branch types by putting an arc across a bundle of sensor branches to indicate that all branches 
in the bundle are part of one plan. This is the convention used in the well-known class of 
AND/OR trees [Nilsson, 1980]. 

To plan, we expand the tree from the root node corresponding to the initial hyperstate. We 
can compute an expected cost for each plan by propagating expected costs upward from leaf 
nodes. Branch-and-bound techniques may be helpful in searching the plan tree for an optimal 
plan. Note that all subplans need not be of the same length. We can truncate a subplan when 
we find a hyperstate with acceptable cost. 

7.2.6 Related Work 

A tree-based model for planning with sensors and actions was proposed by Taylor, Mason, 
and Goldberg (1987), who noted that plans using sensor data can be viewed as game-playing 
strategies, where sensor data is chosen by an adversary. In that paper, each node in the tree 
corresponded to a set of possible states. Without a probability measure, the objective is to find 
guaranteed plans, that is, plans that achieve a desired final state for all combinations of sensor 
data. Finding guaranteed plans is related to the class of chess problems where one is asked to 
find a sequence of moves that will guarantee checkmate in k moves for White, regardless of 
what Black does. In this framework plans are evaluated with a binary metric: either they are 
guaranteed to succeed or they are not. 

The binary metric suffers from the limitations described in section 1.1.5: there is no way 
to compare plans when a guaranteed plan does not exist or when more than one guaranteed 
plan exists. Insisting on guaranteed strategies can be overly conservative and inefficient since 
one must consider all possibilities, however unlikely. Guaranteed plans are related to minimax 



7.2. FUTURE WORK: STOCHASm PLANS WITH SENSORS 95 

strategies in game theory in that both consider the worst-case. For iterative plans where failures 
can be recycled, it might be more efficient over the long run to plan for the average case. In 
game theory such situations are known as stochastic games [Luce and Raiffa, 1957]. 

Plans that use only sensors can be viewed as sequential decision procedures [Wald, 1947, 
Berger, 1985]. The problem of finding an optimal sequential decision procedure is called 
experimental design, where the cost of an experiment is related to how much state uncertainty 
it can eliminate [Fisher, 1942, Lindley, 1956, Good, 1969, DeGroot, 1970, Bernardo, 1979]. 

7.2.7 Other Applications 

Taylor, Mason, and Goldberg [1987] proposed several applications of their approach to ma­
nipulation planning. These applications are also relevant when that approach is extended with 
cost and probability models. 

We can use the stochastic planning framework to treat the problem of finding an optimal 
strategy for recognizing parts. In this case the state space is augmented with a dimension 
specifying the identity of the part so that we can recognize the part by reducing uncertainty in 
the state space. This is essentially Donald's idea for treating model error with a generalized 
configuration space [Donald, 1987]. 

So far, we have considered only one type of sensor. It is possible to plan with multiple sensors 
where each sensor has an associated data space and conditional probability distribution. If we 
consult two different sensors in sequence, we can compute the resulting hyperstate conditioned 
on both sensor readings. In this way we can combine information from multiple sensors 
{sensor fusion). We can also compare sensors and combinations of sensors and actions using 
the expected cost metric. 

We can treat the problem of sensor design in this framework by planning with a set of 
proposed sensor designs. We implement those sensors required by the stochastically optimal 
plan. For example, consider the problem of finding an optimal sensor placement. Such a 
problem can be approached by treating each position of the sensor as if an open-loop action 
had occurred to locate the sensor. The action in a stochastically optimal plan will specify the 
sensor position. 

We can also treat the problem of sensor calibration by including sensor parameters in 
the state space. A calibration plan is a sequence of actions and sensor probes, where each 
action and sensor datum changes a probability distribution on the parameter values. Plans that 
minimize uncertainty in the final hyperstate can be used to determine sensor parameters. For 
such problems the cost function should measure the uncertainty in the final hyperstate. 
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7.3 Future Work: Other Cost Functions 

One way to measure the uncertainty in a probability distribution is with variance, Var(X) = 
Σ P{8}(0 — θ )2, where β is the mean of the distribution. For discrete distributions we can also 
use an "information" measure such as entropy. 

Entropy and Expected Information 

When the set of possible states at each stage of the plan is described by a discrete probability 
distribution, we can use Shannon entropy as a scalar measure of the uncertainty associated with 
the set. [Sanderson, 1984] used Shannon-entropy to measure uncertainty in robotic assembly, 
charting the change in entropy at each assembly stage. 

The definition of Shannon-entropy comes from a logarithmic measure of information sug­
gested by R. V. Hartley in 1928: Let Ε be an event that occurs with probability P{E). If we 
are told that event Ε has occurred, then we can say that we have received — log P{E) units 
of information. If the logarithm is base 2, then the units of information are bits. [Shannon, 
1948] denned the entropy of a discrete probability distribution as if (A) = — Σ Ρ, log Ρ,•. For a 
hyperstate with uniform probability distribution, Η — log n, where η is the number of elements 
in the state space. For a hyperstate where all the probability is concentrated at one state, P,- = 1 
for some i, then Η — 0. (OlogO is defined to be zero.) 

We can use Shannon-entropy as a cost function for hyperstates when planning. Say H(X0) 
is the entropy of the initial hyperstate, and H(Xi) is the entropy of the hyperstate resulting 
from an open-loop plan. We can use the change in entropy, H(Xo) — Η(Χχ), to measure how 
much uncertainty is reduced by the plan. For a plan with sensors, we can compute the expected 
entropy for the set of final states using the marginal probabilities associated with each sensor 
value, and compute the average change in entropy that we expect from the plan. When entropy 
is measured in bits, we can measure the effectiveness of a plan in terms of how many bits of 
information it will produce. Shannon's First Theorem can be used to show that the average 
information yielded by any sensor plan is non-negative. 

Entropy is not a Panacea 

Relating the cost of a hyperstate to its entropy is not always appropriate. The definition of 
information adopted by coding theory discards any conception of the "quality" of the informa­
tion, saying that the information gained from event Ε is simply proportional to —logP(E). 
This can produce some interesting conclusions. Consider a state space with two elements, such 
that the first corresponds to a desirable outcome and the second corresponds to an undesirable 
outcome. Now consider two probability distributions on this state space, λ! = (.5 .5) and 
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λ 2 = (.01 .99). Clearly Aj is to be preferred over a A2. If we use entropy as a cost measure, 
however, A2 will have much lower cost and will be preferred over Aj. The hyperstate A2 is 
indeed more certain. Unfortunately, it is more certainly bad. 

7.4 Conclusions 

Since uncertainty is unavoidable in physical applications, we must anticipate multiple outcomes 
when planning. In this thesis we extend the geometric theory of manipulation with a stochas­
tic framework that uses probability and cost models to rank plans on the basis of expected 
performance. 

The bulk of the thesis is devoted to developing examples of stochastic planning. The 
examples focus on the problem of orienting planar parts with a programmable parts feeder. We 
propose a new design for such a feeder and use part geometry to derive cost and probability 
models. We also apply the stochastic framework to planning for a tray-tilting system where the 
stochastic transition matrices are determined empirically. 

• We find a lower bound on the probability that a random grasp will be stable. 

• Noting that this lower bound approaches one as the coefficient of friction goes to zero, 
we discover that africtionless parallel-jaw gripper will achieve a stable orientation with 
probability one. We propose a practical mechanism to implement such a gripper. 

• We give an algorithm for finding stochastically optimal parts-feeding plans and prove that 
this algorithm is correct, complete and runs in time 0(n2), where η is the number of part 
vertices. 

• We demonstrate how the stochastic model of control can be generated empirically by 
observing a physical tray-tilting system. 

The stochastic framework proposed in this thesis uses the theory of Markov chains to provide 
a mathematical foundation for planning in the presence of uncertainty. The binary-valued metric 
used to evaluate guaranteed plans can be viewed as a special case of the real-valued metric 
used in the stochastic framework. We have shown how probability and cost models can be 
justified with system geometry or empirical observations. On this basis we conclude that the 
stochastic framework proposed in this thesis is well-founded, general, and applicable to robotic 
manipulation. 



Appendix A 

Overview of Statistical Decision Theory 

Statistical decision theory can be a useful formalism for planning if we think of a plan as 
a sequence of decisions. In chapters 1 and 2 we discussed the relation between decision 
theory and manipulation planning. In this appendix we review the basic components of 
decision theory. There are also several excellent textbooks on decision theory [DeGroot, 1970, 
Berger, 1985]. Below we use Berger's notation. 

Let# 6 Θ be an unknown state of nature, a; £ X. Decisions are based on noisy measurements 
(data) described by /(χ\θ), the probability of measuring data χ given state Θ. Let α Ε .4 be 
an action. A loss function, L, is a real-valued function on Θ χ .4. A decision rule, 8 £ Δ, is 
mapping from data to actions - a function from X to A. We define risk, R, as a real-valued 
function on Θ χ Δ: 

R{6,8) = ί Σ(θ,δ)/{χ\θ)<1χ. (A.l) 
J χ 

Given (Θ, X,f, A, L, Δ), we want to find the optimal decision rule: one that minimizes R. 
The difficulty is that R is a. function over the state space. It is not obvious how to define a 
maximum. There are three basic approaches. 

The Classical approach is to select a "best" decision rule - one that will have a minimum 
risk for all values of Θ. But often a "best" rule does not exist: a rule may minimizes R for some 
values of θ while another rule minimizes R for other values. 

The Minimax approach is to find a rule that will minimize the worst-case risk, supe R. This 
approach leads to conservative rules that may be far from optimal on average. Note that both 
the Classical and Minimax approaches are independent of the distribution of inputs. 

The Bayesian approach is to find the rule that minimizes the expected risk using some prior 
distribution of inputs, τ(θ). We can define the Bayes' risk as 

r{v,S) =Ie R{e,8)T{e)de (A.2) 

= JeIx L(e,5)f(z\$)v(9)mx, (A3) 
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Note that for any δ, r is a scalar and so a maximum over all δ is well-defined. The resulting 
rule, δ*, is called a Bayes' rule. 

Figure A.l: The risk function for two decision rules, rule 1 and 
rule 2. We want to minimize risk. Rule 1 is superior (has lower 
risk) for the majority of states, however the Minimax approach 
would select rule 2 since it's worst-case risk (y) is lower than 
the worst-case risk for rule 1 (x). The Bayesian approach would 
use a probability distribution on the state space to compute a 
scalar expected risk for each rule and choose the rule with lower 
expected risk. Unless the probability were highly concentrated 
around its peak, rule 1 would be the better choice. 

In the Bayesian approach it may be more appealing to think of the prior as being conditioned 
by the measurement. After measuring value x, let π(θ,χ) be the resulting prior. Define the 
Bayesian expected loss to be real-valued function on A' χ A: 

ρ(π(θ\χ),α) = / Σ(θ.α) π{θ\χ) άθ. (Α.4) 

A fundamental result from decision theory is that any rule that minimizes ρ for each χ also 
minimizes r where the expectation is taken over π(θ\χ) - either criteria produces a Bayes' 
rule. For some intuition behind this equivalence, compare Eq. (A.3) with Eq. (A.4). For a 
given decision rule, δ, Eq. (A.3) defines the risk over the joint distribution of measurements 
and states. Similarly, Eq. (A.4) defines the risk over the conditional distribution of states for 
each value of x. If we think of the latter as a function to be minimized for each χ then it is less 
surprising that the two formulations are equivalent. 
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The Bayesian approach is sometimes criticized on the grounds that its models of the prior 
distribution are unrealistic. Bayesians like to point out that although the Minimax method 
avoids making assumptions about probabilities, it is in fact consistent with assuming that the 
worst-case is most probable. Thus minimax plans can be overly conservative and inefficient 
for the average case. Another response is to show that Bayesian strategies are robust to the 
choice of prior distribution [Berger, 1985]. 



Appendix Β 

The Frictionless Gripper 

In this Appendix we describe an invention1 that can improve the performance of the standard 
parallel-jaw gripper. The invention uses a passive linear bearing to reduce the effective frictional 
force between the gripper's jaws. 

B.l Background 

Grippers are used to grasp and transport objects in robotics, teleoperation (master-slave control), 
and prosthetics (artificial limbs). See Kato, Chen [1982,1982] for a review of existing designs. 
The parallel-jaw gripper (Figure B.l) is perhaps the most common, known as "the workhorse 
of the mechanical end-effectors" [Grupen et al., 1989]. Parallel-jaw grippers are "universal" 
in that they can be used to pick up almost any part and hence are standard equipment on many 
commercial robot systems. 

Telia et al. [1982] reports that a major disadvantage with the parallel-jaw gripper is that 
"it requires rotational alignment of the jaw with the opposing surface holdsite of a desired 
workpiece for reliable acquisition." For example, consider the two grasps shown in Figure 
B.2. On the left, the gripper has not been aligned with the gripping surfaces (holdsite) of the 
hexagonal workpiece; the resulting grasp is intuitively less stable (reliable) than the grasp on 
the right. 

In what follows we will consider the two-dimensional projection of parts and refer to forces in 
the plane of the part. In reality of course, parts will be three-dimensional. The two-dimensional 
projection is particularly appropriate for the class of extruded parts. 

Carnegie Mellon University applied for a patent on this device in July 1989, listing the author and Professor 
Merrick Furst of the School of Computer Science as co-inventors. 
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Figure B.l: The standard parallel-jaw gripper. 

Several stability measures for grasping have been proposed. Hanafusa and Asada [1977] de­
fined a multi-fingered grasp configuration to be stable when small deviations produce restoring 
forces. They developed a potential function for a gripper with three spring-loaded frictionless 
fingers and showed that local minima in this function correspond to stable grasps. Similarly, 
[Brost, 1988] defined a parallel-jaw grasp to be stable when at least one face of the (polyhedral) 
part is parallel to the jaws. This definition can be extended to smooth parts using local minima 
in a potential based on the diameter function as described in Section D.l. We will adopt this 
definition of stability although it is not the only definition. 

One way to achieve a stable grasp is to sense the part's orientation and align with jaws prior 
to grasping. Analyzing the probability that a random grasp is stable led us to observe in Section 

Figure B.2: Two-dimensional projection of a parallel-jaw grip­
per and a hex nut. The grasp on the right is stable in the sense 
that small perturbations in orientation produce restoring forces. 
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3.11 that a simple alternative is to eliminate friction in the plane of the part so that the part 
will passively rotate into a stable configuration as the jaws are closed. We require high friction 
between the part and the gripping jaws to counter the effect of gravity as the part is lifted and 
carried. We therefore desire low friction along one direction and high friction along a second 
direction. 

B.2 The Invention 

We can achieve low friction in the plane of the part but high friction orthogonal to the part by 
mounting a sliding plate (linear bearing) on one jaw. The inner surface of both jaws is covered 
with a high-friction material such as rubber. Since zero friction is impossible in a physical 
mechanism, we refer to the resulting device as a low friction gripper, see figure B.3. The low 
friction gripper works as shown in figure B.4. 

Sliding Jaw 

Figure B.3: The low-friction gripper. (Based on a drawing by 
Ben Brown). 

When grasping, the jaws are closed with increasing force until the motor stalls (or maximum 

air-pressure is applied in the case of pneumatic actuation). The linear bearing operates passively, 
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Figure Β .4: Time-sequence of grasping with a low-friction grip-
per. (1) As the two outer jaws close over a typical part (hex 
nut), horizontal forces cause the sliding jaw to translate to the 
left (2) until the part is gripped in a stable configuration (3). 
(Based on a drawing by Ben Brown). 

responding to mechanical forces that arise during grasping. This is an example of (passive) 
compliance [Mason, 1978]. 

We can add a spring to center the bearing between grasps without impeding the action of 
the gripper, since forces arising from the spring will be dominated by the gripping force as the 
jaws are closed. 

We require a bearing on only one jaw. A single bearing is sufficient to reduce friction 
between the jaws so that the part will tend to rotate into a stable configuration. One fixed jaw 
insures that the part will not continue to translate after the part reaches a stable configuration. 
Note that the proposed gripper does not constrain lateral motion of circular parts. 

We have built a prototype low friction gripper and verified its performance in experiments 
with several shapes. We grasped parts at random orientations in two sets of 250 trials. Without 
the sliding jaw, half the grasps were stable (126/250). With the sliding jaw, every grasp was 
stable. Although the bearing does exhibit some friction, we conjecture that vibration arising 
from the gripper drive is sufficient to dislodge unstable orientations, so the mechanism is 
effectively a frictionless gripper. 

A frictionless gripper can simplify the problem of orienting industrial parts, since the 
workpiece is known to be in one of a finite number of stable orientations after gripping. A 
parts-orienting algorithm using the low friction gripper is described in Chapters 4 and 5. 



Appendix C 

Towards a Tighter Lower Bound on P(s) 

In Chapter 3 we derived a lower bound on P{S), the probability that a random grasp will 
be stable. The lower bound may be overly conservative; however a tighter bound requires a 
stochastic model of the pushing phase, which depends on the microscopic contact topology 
and the distance pushed. Peshkin [1986] found bounds on the set of all possible rotation rates. 
Simulation results led him to speculate that the rotation rate might be described by a unimodal 
probability distribution. 

Uncertainty in the details of the load pressure is reminiscent of the uncertainty in the 
pressure distribution due to molecules in a gas, where aggregate behavior is successfully 
predicted using statistical mechanics. Probabilistic models of microscopic surface topology 
have been developed to justify the linear relationship between frictional force and the normal 
load [Onions and Archard, 1973], but so far no one has developed a probabilistic model to 
predict the motion of a pushed part. 

For each initial orientation there is a set of possible orientations that can be produced by 
pushing. Since we have no basis for preferring one orientation over another, we might assume 
that every orientation in this set is equally likely. This is a very strong assumption and we use 
it only to illustrate how a probabilistic model of the pushing phase might be used to derive a 
tighter bound on P{S). 

Recall from Chapter 3 that θ2 is the part orientation at the onset of squeezing - when the 
second jaw makes contact. If we can derive a probability density for θ2 we can bound P(S) 
with 

P(S) > I fh[h) «w. (ci) 
•/Π(Θ,) 

Note that this is a lower bound since the integral is taken over the strong preimage; orientations 
in the weak preimage may also become stable as the grasp proceeds. 

In general, θ2 will depend on θ\, how far the jaw pushes, and the rotation rate, which in 
turn depends on the time-varying distribution of pressure under the part which depends on the 
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microscopic contact topology. Intuitively, pushing motion tends to cause stable part edges to 
align with the gripper so that the part's orientation after pushing, θ2, will be more likely to be 
at a stable orientation than an unstable one. If we had a stochastic model of rotation rate and 
pushing distance, we could use Eq. (3.1) to determine fe2. 

Figure C.l: The probability density function fe2(02) over a 
subset of the push-stability diagram. Shown is a representative 
interval between a stable orientation 0X and an unstable equi­
librium orientation θ$. Direction of rotation is always to the 
left, toward the stable orientation. 

An alternative approach is to bound the possible values of θ2 and assume that the distribution 
of angles within this range is uniform. Assume for the moment that we know which jaw makes 
contact first. Consider a typical subset of the push-stability diagram as shown in Figure C.l. 
Let #o, θχ be the orientation of the surrounding 0 and χ marks. 

Assume that the direction of rotation is clockwise, or right-to-left on the push-stability 
diagram (we can reverse signs to handle the symmetric case). The amount of rotation that 
occurs during a particular trial is θχ — θ2 mod 2π. Note that θ2 can range from θ ι (no rotation) 
to 0X (the part rotates all the way to the nearest stable edge). Without a good reason to prefer 
any value in this interval, we assume that the probability of any θ2 is uniformly distributed on 
the interval: f{h\h)~ J^J;• 

The joint distribution is simply /(#2>#i) = /(^'^Ο/ί,Ι^ι)• We can compute fe2{h), by 
integrating the joint distribution over all initial orientations that may end up at angle θ2. 

For example, consider θ2ο shown in Figure C.l. Recall that motion is always in the direction 
from θ<> to θχ, so only angles between 6% and #<> can possibly rotate into orientation 6%. The 
density is 

ϊβ2(θ2) = f^ f(91,9l)d9l (C.2) 
J β-, 
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= ['* mWi) feM Mt (C.3) 

If we assume a uniform distribution for θ ι as in Section 3.9, this becomes 

« « - / . 

flo 1 1 
— Mx. $l -θχ 2τ 

Integrating, 

Under this model, /e2(#o) = 0 and /e2(#x) —• oo. The pdf for θ2 in this interval is thus a 
normalized logarithmic function sloping up toward the nearest χ. This implies that the part is 
likely to rotate toward a stable orientation during the pushing phase, which is consistent with 
our intuition. However, this model may tend to underestimate the pdf near a 0 mark. 

Recall that for a given θ2, the squeeze-stability diagram tells if the outcome will be stable 
or not. Let θα and #i> be bounds on the strong pre-image in the squeeze-stability diagram for a 
particular stable outcome, Θ,. By integrating the expression in Equation (C.4) over this interval, 
we can find the probability that the final orientation will be θ„. 

P{6.) > I feM<U>2 (C5) 
•/Π(β,) 

άθ2. (C.6) 

Integrating, 

Ρ ( 0 . ) > ^ [ Μ ΐ + 1 η * θ χ ) + *«χ1η0«χ-*6χ1η06χ], (C7) 2ττ 

where θυν = θυ — $ν• 

If we assume that either jaw is equally likely to make contact first, then by normalizing the 
pdf for each jaw so that it integrates to 1 /2, the summed probabilities from Equation (C.7) give 
a tighter lower bound for P(S). 

To compare this lower bound to the one derived in Chapter 3, consider the square shape 
where all the stable edges for pushing are also stable edges for squeezing: θα = θχ. The lower 
bound from Equation (3.13) is 

P(8.) > T 1 • (C8) 
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while Equation (C.7) gives 

W>£(l+tafer). (C9) 

Since θ$χ > 0(,x, the lower und from Equation (C.9) is tighter than the lower bound from 
Equation (C.8). The difference arises from the assumption that favorable rotation is likely to 
occur during the pushing phase. The two lower bounds are identical only when 0j = 0$, that 
is, when friction is so high that almost every orientation gets wedged. 

C.l Examples 

We implemented equation C.7 in Common Lisp to derive a lower bound on Ρ(S) based on 
the uniformity assumption. The input is a list of vertices representing a polygonal part, the 
part's center of mass, and the coefficient of friction. As before, part vertices are represented 
with rational numbers so that the angles used in the analysis can be represented exactly using 
rational complex numbers. The output is a tighter lower bound than the one found in the text. 
Compare Table C.l with Table 3.1. 

Observe that a stable grasp becomes more likely as friction is reduced. This is because as 
friction between the gripper and part is reduced it is increasingly difficult to achieve a wedged 
orientation. 

In this appendix we derived a lower bound for P( S) under the assumption that the amount of 
rotation during the pushing phase is uniformly distributed. That is, for each initial orientation 
there is a set of possible orientations that can be produced by pushing. With no basis for 
preferring one orientation over another, we assume that every orientation in this set is equally 
likely. This assumption leads to an exponential distribution for the part's orientation prior to 
squeezing that is mildly consistent with intuition. 

Although this assumption serves to illustrate how the analysis can be extended to incorporate 
a stochastic model of pushing, it tends to underestimate the probability that part orientation will 
be near an unstable equilibrium. This is because the uniformity assumption does not take into 
account the fact that rotation rate is slower when the object is near an unstable equilibrium. In 
the absence of a better analytic model, an alternative is to empirically estimate the distribution 
based on physical experiments. In Chapter 6, we use experimental data to derive a probabilistic 
model of system behavior. 
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part shape 
triangle 
rectangle 
house 
4gon 
5gon 
wrench 
tuning-fork 
key 

sides 

3 
3 
5 
4 
5 
6 
6 
11 

// = .25 

0.59 
0.94 
0.72 

0.59 
0.85 
0.66 
0.87 
0.66 

μ = .10 
0.85 
0.99 
0.90 
0.75 
0.95 
0.82 
0.96 
0.73 

μ= .05 
0.93 
0.99 
0.95 
0.87 
0.97 
0.91 
0.98 
0.84 

Table C.l: Lower bound for P(S), varying shape and coeffi­
cient of friction. All parts have uniform mass density. 



Appendix D 

The Diameter Function 

In Chapter 4 we showed that a diameter function could be used to analyze the mechanics of 
squeeze-grasp actions. In this appendix we discuss the diameter function in more detail and 
give an 0(n log n) algorithm for computing the diameter function for an π-sided object. 

Figure D. 1: The diameter function for the four-sided part shown 
at the right in its zero orientation. During a squeeze, the part ro­
tates so as to reduce the diameter, terminating when the diameter 
reaches a local minimum 

Let a two-dimensional object be described with a continuous curve in the plane, C. The 
distance between two parallel tangents varies with the orientation of the lines. We define the 
diameter function, ά(θ), to be the distance between parallel lines of support at angle Θ. Jameson 
[1985] defined the same function and used it to show that any two-dimensional convex body 
must have at least two stable equilibria where it can be grasped between parallel jaws. The 
maximum of the diameter function is known as the diameter of the set of points contained in C 
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[Preparata and Shamos, 1985]. The maximum is useful for clustering point sets. 

• The diameter function is continuous: Ad —> 0 as Δ0 —• 0. 

• The diameter function for C is equal to the diameter function for the convex hull of C. 

• The diameter function has period Jr. 

Given a Ust of η vertices describing the polygon, the diameter function is defined by a list 
of sinusoidal functions (phase and amplitude) and the associated transition angles. Transitions 
between sinusoids can only occur when an edge is aligned with the gripper, so there are at most 
2n sinusoidal pieces. Since each sinusoid arises from contact between two opposing vertices 
in the object, we can trivially compute the diameter function by enumerating all n2 pairs of 
vertices. The running time of the trivial algorithm is thus 0(nz). A faster algorithm exists. 

Preparata and Shamos [1985] describe a linear-time algorithm for finding the maximum 
diameter of a convex polygon with η sides. It proceeds by enumerating the set of all pairs of 
vertices that admit parallel tangents. There are at most 3n/2 such pairs. Each pair defines a 
chord of length k and angle 0,•. The longest chord gives the diameter of the polygon. 

To find the diameter/wncri'on, we sort this list of chords by increasing angle #{. If two chords 
have the same angle, discard the shorter chord. Also sort the Ust of polygon edges by angle and 
discard dupUcates (corresponding to parallel edges). Every adjacent pair of edge angles in this 
sorted list corresponds to a sinusoid in the diameter function, <f;(0) = /t| sin(0:• — θ)\, where U 
and 6i are taken from the longest chord in the interval orthogonal to the interval between edges. 
Finding the longest chord in each interval requires a single sweep through the sorted Ust of 
chords. 

Sorting dominates the running time, so we can compute the diameter function in time 
0(n log π). This is also the complexity of finding the convex huU for a set of two-dimensional 
points. A simple reduction from SET DISJOINTNESS can be used to show that this running 
time is optimal. 

D.l Diameter as a Potential Function 

The diameter function can be viewed as a potential energy function in a conservative system. 
We define a potential function for a spring-loaded parallel-jaw gripper as foUows, assuming 
zero friction between the part and the jaws to insure that the system is conservative. We assume 
that aU motion and forces occur in the plane. Let d be the jaw separation (d = 0 when the jaws 
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are fully closed). Assume that the jaws tend to close due to the action of springs in compression, 
so that the closing force is F(d) = kd. Using the standard definition of potential energy, 

U(d) = - ( F{d)dd (D.l) 
./o 

= --kd2. (D.2) 
2 

Now consider d to be a function of part orientation, Θ; so that 

ϋ(θ) = -\kd{ef. (D.3) 

It is easy to show that a two-dimensional grasp has rotational stability if and only if it corresponds 
to a local minimum in U(•). 

This definition of stability applies to curved or polyhedral parts. For a polygon, there can 
be up to η stable grasps, where η is the number of edges in the polygon. 

D.2 A Cost Metric Related to The Diameter Function 

Figure D.2: Three parallel-jaw grasp configurations. 

Consider the three grasp configurations shown in figure D.2. Which seems to be the most 
stable? Intuition suggests that stability increases from left to right. 

Several metrics related to stability have been proposed for multi-fingered hands. We can 
rank grasps using the potential function. Let us define the stability of a grasp to be the smallest 
perturbation in angle before the part switches to a neighboring minimum [Whitney, 1990]. That 
is, the stability of a minimum is the distance to the nearest maximum. Using this definition we 
can rank the minima and find one with maximal stability. That is, for a given part geometry let 
the stability measure be 

ν(θ.)=πιΐη[\θι-θΙ,(θ3)\, \ Θ . - Θ η ( Θ μ ) \ ] , (D.4) 

where θ^θ,), 6^(6,) are the left- and right-hand maxima enclosing θ3. For any part, a most 
stable grasp is one with maximal stability: 

0; = a r g m a x * ( ^ ) • (D-5) 



Appendix Ε 

Push-Grasping 

In this appendix we consider a way to relax assumption 6 of section 4.3, where we assumed 
that both jaws make contact simultaneously. Recall that this assumption is not always satisfied 
in practice, since there may be a period of time when one jaw pushes the part before the second 
jaw makes contact. The part can rotate during this period so that its final orientation is not as 
predicted by the pure squeezing analysis. 

We consider the class of actions where one jaw intentionally pushes the part prior to grasping. 
Brost [1988] refers to such actions as push-grasp actions. Given sufficient pushing distance 
[Peshkin, 1986], the part rotates so that one of its edges is aligned with the pushing jaw with 
probability one. We assume here that pushing distance is sufficient to align the part. The 
part's motion after the second jaw makes contact can be predicted using the squeeze function 
as before. By pushing with one jaw, we can eliminate the 180° ambiguity in the part's final 
orientation that is inherent in squeeze-grasping. 

As with squeeze-grasping, the transfer function for push-grasping is a monotonically non-
decreasing step function on the space of planar rotations. Since this is the only assumption 
required by the planning algorithm of chapter 5, we can use that algorithm to plan stochastically 
optimal push-grasping strategies. 

To analyze the mechanics of push-grasping we need one additional piece of information, 
the part's center-of-mass. A result due to Mason says that the part's rotation is determined 
by a vector from the point where the jaw makes contact with the part to a point at the part's 
center-of-mass. The mechanics of pushing can be captured with an analog to the diameter 
function: the radius function [Mason, 1982]. 
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E.l The Transfer Function 

E.l.l The Radius Function 

r 

Figure E. 1: The radius function for the four-sided part shown at 
the right in its zero orientation. During a squeeze, the part rotates 
so as to reduce the diameter, terminating when the diameter 
reaches a local minimum. 

As with the diameter function, let a two-dimensional part be described with a continuous curve, 
C, in the plane. Also, define some point on the part as the part's centroid. The perpendicular 
distance from a tangent line to the centroid varies with the orientation of the line. We define 
the radius function, r(6), to be the distance from a tangent line at angle θ to the centroid. See 
figure E.l. The radius function for an n-sidedpart can be computed in time O(n). 

E.1.2 The Push Function 

The push function maps an initial orientation of the part to a final orientation after the pushing 
action. It is a step function derived from the radius function in the same way that the squeeze 
function is derived from the diameter function. That is, discontinuities between steps occur at 
local maxima in the radius function. The height of a step corresponds to the enclosed local 
minimum. 

E.1.3 The Push-Grasp Function 

To analyze the mechanics of pushing followed by grasping, we must compose the push function 
with the squeeze function to get a transfer function that we call the push-grasp function. It is 
illustrated in figure E.3. 
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Figure E.2: The radius and push functions for the four-sided 
part. 

E.2 Planning 

The planning algorithm described in chapter 5 can generate plans for the class of push-grasp 
actions since the transfer function meets the assumptions of section 5.3. The preimages found 
by the algorithm are shown in Figure E.4. 

Figure E.5 shows a plan for the 4-sided part with the evolution of the probability distribution 
for the part as it goes through the plan. (Note that we can orient the part uniquely with a 
sequence of push-grasp actions since the transfer function for push-grasping does not have 
period π.) If we assume that each action requires one time unit as does the filter step, the 1-step 
plan has minimal expected cost, 3.7 time units. Although the 4-step plan does not require a 
filter step to detect failure (since it orients the part with probability one), it still requires one 
time unit for transferring the part to the conveyor after the plan is completed. 

Figure E.8 shows a plan for the house-shaped part with the evolution of the probability 
distribution for the house-shaped part as it goes through the plan. If we assume that each action 
requires one time unit as does the filter step, the 3-step plan has minimal expected cost of 4 
time units. 
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Figure E.3: Push-grasp analysis for the four-sided part shown 
in the center. In the upper left is the radius funcdon. Directly 
below it is the push funcdon. In the upper right is the diam­
eter funcdon. Direcdy below it is the squeeze funcdon. The 
push-grasp funcdon is shown at the bottom. 



E.2. PLANNING 117 

Figure E.4: Two periods of the push-grasp function (shown 
from 0 to 4π) for the 4-sided part. The planning algorithm finds 
preimages corresponding to the horizontal bars at the bottom. 
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Random Push-Grasp: 
Push-Grasp at 25°: 
Push-Grasp at 79°: 
Push-Grasp at -23°: 

[.26 .21 .25 .28] 
[.26 .46 .00 .28] 
[.46 .00 .00 .54] 
[.00 .00 .00 1.0] 

Figure E.5: Above: Four traces of push-grasp plan: push-grasp 
at 0°, 25° 79°, and -23°. Darkened line indicates pushing jaw. 
Below: Evolution of probability distribution. 
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Figure E.6: Push-grasp analysis for the house-shaped part 
shown in the center. In the upper left is the radius function. 
Directly below it is the push function. In the upper right is the 
diameter function. Directly below it is the squeeze function. 
The push-grasp function is shown at the bottom. 
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Figure E.7: Two periods of the push-grasp function (shown 
from 0 to 4π) for the house-shaped part. The planning algo­
rithm finds preimages corresponding to the horizontal bars at 
the bottom. 
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Random Push-Grasp: 
Push-Grasp at 72°: 
Push-Grasp at 135°: 

[.20 
[.40 
[.00 

.40 .40] 

.60 .00] 
1.0 .00] 

Figure E.8: Above: Three traces of push-grasp plan to orient 
the house-shaped part. Darkened line indicates pushing jaw. 
Below: Evolution of probability distribution. 



Appendix F 

Planning with Non-Uniform Priors 

In Chapter 5 we showed that the backchaining planner generates stochastically optimal plans 
under the assumption that the prior distribution of part angles is uniform. In this appendix we 
show how the planner can be extended to non-uniform priors. 

Figure El: The figure shows a prior probability density func­
tion. Plan ρ is represented with a funnel. The funnel is po­
sitioned under the prior density function so as to capture the 
maximal amount of probability mass. 

Recall that each i-step plan generated by Phase I of the algorithm is geometrically optimal -
it acts like a funnel with the largest possible "mouth". The position of the mouth specifies the 
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initial gripper angle for plan p. The included probability mass specifies the probability that the 
plan will succeed in one iteration. When the prior probability density is uniform, all positions 
for the mouth are equivalent. For cases where the prior probability density is non-uniform, we 
must position the mouth so as to capture as much probability mass as possible. See Figure F.l. 

The optimal funnel position is related to the statistical concept of a 100(1 — a)% credible 
set - a subset of the state space such that the true state is included with probability at least 
1 — a. Generally one is given a and asked to find the smallest credible set, this is known as the 
100(1 — a)% highest posterior density (HPD) credible set. Berger [1985] gives a procedure 
for finding the HPD credible set. In our application we want to find the optimal funnel position. 
This is equivalent finding a connected credible set of given size that minimizes a. 

If the prior probability distribution is discrete over η points, then we can find an optimum 
position for the mouth in time 0( η ) by aligning the mouth with each point in turn and computing 
the enclosed probability. 

When the prior probability distribution is continuous, let f(6) be the initial probability 
density function for the part on the set of angles 5 1 (all values are modulo 2π). Assume /(#) 
is differentiable. Let F(6) be the cumulative distribution function, 

F{9) = f }{φ)άφ. (F.l) 
JO 

Let h = Θ be the width of the funnel mouth corresponding to plan p. To specify a position for 
the mouth, let θ be the position of the left-most edge of the mouth. Let ρ(θ) be the probability 
that the initial orientation is included in the mouth when the mouth is aligned with Θ: 

ρ(θ) = F(6 + h) - F(6). (F.2) 

That is, ρ(θ) is the probability that the plan succeeds when the mouth corresponding to the plan 
is aligned with Θ. We want to maximize ρ(θ). Let p* be the maximum probability 

ρ•=τηαχρ(θ). (F.3) 
6 

Let Θ* be the position that attains this maximum. Technical note: since Sl is compact, if ρ(θ) 
is continuous it will attain its maximum. 

If there is a unique solution, we can find the optimal position for the funnel by differentiating 
F.2 and setting the result equal to zero, 

f& = W) - f{9 + /0 = 0, (F.4) 

to find the Θ* that satisfies the equation 

f(n = f(r + h). ( F . 5 ) 
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That is we align the mouth of the funnel such that both edges have the same probability density. 
The intuition is that is that if one edge had higher density, then we could increase the included 
probability mass by shifting the mouth in the direction of that edge. Note that we must check 
that this is a local maximum by taking the second derivative. 

When there is more than one solution to F.2, numerical methods for global optimization 
must be used, i.e. discretizing the set Θ and testing each possible position. 

For non-uniform density functions, we must modify step 2 of Phase Π to compute Θ* and 
p* for each subplan. Given the prior probability density /, let a(f) denote the time complexity 
for computing Θ' and p* for a given h. The complexity of the planning algorithm is then 
0(an + π2). When the prior is uniform, then α = 1, since it doesn't matter where we position 
the funnel. When the prior is discrete over m points, then α = m. If the prior is a normal 
distribution, then a(f) = 1, since the best position is centered around the mean and the included 
probability is related to the variance. 

We can prove that the modified algorithm finds stochastically optimal i-step plans by showing 
that Lemma 5.4 holds when the prior is not uniform. 

Lemma F.l If an i-step plan is geometrically optimal then it is also stochastically optimal. 

Proof: Let F( •) be the prior cumulative probability distribution on the space of planar rotations. 
Let pi be a geometrically optimal i-step plan with pre-image of length h. Let ρ(θ) = F(0 + 
h) — F(6). We show that no other i-step plan can collapse a larger probability mass than pi. 

Let p\ be any other i-step plan. Denote the length of its pre-image by h'. Let ρ'(θ) = 
F(9 + h') - F(6). For all θ, ρ'(θ) < ρ(θ) since h' < h by assumption. Thus no matter where 
we align the funnel for plan p-, it cannot have higher probability of success than plan /?,. Thus 
no i-step plan can have higher probability of success than pi. • 



Appendix G 

The Dirichlet Distribution 

In Chapter 6 we used the Dirichlet distribution to model the prior distribution of elements in 
a transition matrix. In this appendix we give some intuition for choosing a prior Dirichlet by 
showing how a one-dimensional Dirichlet distribution (the Beta) varies with its parameters. 
Recall that a random vector ρ = (pi, ••.,?*) has a Dirichlet distribution with parametric vector 
α ss (αϊ,..., ock), where £*i > 0. For any point in Ω, 

tt :-\ — Γ ( α ° ) _cti-l „«*-1 tr %\ 
l ( a i ) . . . I ( Q f c ) 

where ao = Σ a;, and the Gamma function is the continuous counterpart to the factorial. 

Note that the expected value along any dimension of the random vector is E(pi) = <Xi/a0. 
Similarly, Var(pi) = on{a0 - α;)/ο$(αο + 1) and Cov(pi,pj) = -α;α;/α£(αο + 1). 

The Dirichlet is a continuous distribution over a (k — l)-dimensional simplex, so it can be 
hard to visualize. In this appendix we develop some intuition for the Dirichlet distribution by 
plotting the univariate Dirichlet distribution (the beta distribution) as we vary the parameters 
αι,α 2. 

Consider a binary state space with two states, x\ and x2. Let Prob(xj) = p;. We represent 
a probability distribution over the binary state space with the two-element vector p. But since 
Pi = 1 — pi, we can plot the probability distribution for ρ as a function of one variable. In the 
following figures we plot f{pi), the probability density function for p 2 as we vary αχ, α2. 

If αϊ sa θ2 = 1.0, then the distribution is uniform over the interval (0,1) (Figure G.l). 

If αϊ =3 θ2 = .1, then the distribution is skewed toward both zero and one (Figure G.2). 

If αϊ = α-ι = 8.0, then the distribution is skewed toward .5 and is similar to a Gaussian 
(Normal) distribution (Figure G.3). 

If a ( = 4.0 while a2 = 1.0, then the distribution is skewed toward 0.0 (Figure G.4). 
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Figure G.l: Beta(x) for Q] = Q2 = 1.0. Mean = 0.5, Var = 
0.083. 

Figure G.2: Beta(x) for a] = Q2 = .1. Mean = 0.5, Var = 
0.208. 

Figure G.3: Beta(x) for a{ = a2 = 16.0. Mean = 0.5, Var = 
0.008. 
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Figure G.4: Beta(x) for a = 4.0, a2 = 1.0. Mean = 0.20, Var 
= 0.027. 



Appendix Η 

Notation 

a ... 
A ... 
a .... 
b .... 

c ... 
c .... 

c ... 
c ... 
CQ . 
δ.... 
Δ . . . 
ά(θ). 

0 ... 
e . . . . 
E{A) 

f ••• 
F . . . 
Gp.. 

Gq .. 
G ... 
Γ . . . 
h . . . 
Η ... 

friction angle a = arctan μ, Dirichlet parameters 
action space 
action (command, input) 
number of bits 
cost function 
ratio of filter cost to action cost 
expected cost 
continuous curve in the plane 
closure of set Θ 
decision rule 
space of decision rules 
diameter of part at orientation θ 
indicates unstable equilibria 
tolerance margin for grasp angle 
expected value (mean) of random variable A 
probability density function, or generic function 
cumulative distribution function 
mapping for pushing 

mapping for squeezing 
mapping for grasping 
Gamma function (continuous factorial) 
length of an interval of state space 
Shannon entropy 
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I ... interval of state space 
k . . . number of actions 
L ... Loss function 
A . . . probability vector 
Λ . . . set of all probability vectors 
μ ... coefficient of friction 
m ( χ ) marginal probability of χ 
η ... number of edges in a polygon 
„ Order notation, /(π) = 0(g(n)) iff 3c,no 

such that | / (n) | < c\g(n)\ for all η > TIQ. 
Ω . . . parameter space for multinomial distribution 
Ρ (A) probability of event A 
ρ — probability 
ρ . . . parameter vector 
Ρ . . . stochastic transition matrix 
7Γ . . . 3.14159.... 
Φ . . . stability measure for grasping 
r(e) . radius of pan at angle θ 
R ... risk 
5i . . . set of real numbers 
ρ — plan, a sequence of actions, also Bayesian expected loss 
5 . . . event corresponding to a stable grasp 
5 1 .. set of rotation angles [0,27r) 
s(0) . deterministic transfer function 
σ ... orientation of gripper in world frame 
Τ ... smallest period in a transfer function 
θ — system state (part orientation) 
Θ . . . state space 
Θ4 .. set of stable orientations 
χ ... sensor datum 
X ... sensor data space or matrix of observations 
χ . . . indicates stable angles 
W .. event corresponding to a wedged grasp 
wx .. indicates that χ is measured in the world frame 
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