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Robots and the return to collaborative 
intelligence
Ken Goldberg reflects on how four exciting sub-fields of robotics — co-robotics, human–robot interaction, deep 
learning and cloud robotics — accelerate a renewed trend toward robots working safely and constructively  
with humans.

Ken Goldberg

The original robots relied on 
collaboration. In the play that coined 
the word ‘robot’ (R.U.R., 1920, by 

the Czech writer Karel Čapek) robot 
workers acted collectively to rebel against 
unfair working conditions. And the first 
real robots, developed during WWII 
to handle radioactive materials, moved 
their mechanical arms under the close 
supervision of human ‘tele-operators’ who 
used levers behind shielded walls.

Since then, almost all roboticists, 
including me, had assumed that robots must 
be self-contained and carry their own power 
supply, memory and computing circuitry. 
This assumption imposed severe design 
constraints, limiting the ability of robots to 
handle uncertainty and adapt to changing 
conditions.

However, over the past decade robots 
have started to collaborate again, accelerated 
by advances in networking and cloud 
computing. Contemporary robots are 
immersed in a networking ecosystem that 
includes massive remote data centres, 
distributed computing, sensors, data streams 
and a myriad of human inputs. Robots can 
download data and software on demand, 
and perform stochastic motion planning and 
learning remotely both offline and online. 
This new generation of robots will be able 
to cope better with unpredictable situations 
and environments, and integrate usefully 
and safely in our world.

This Comment reviews how four growing 
and increasingly overlapping subfields of 
robotics research are influencing this trend: 
co-robotics, human–robot interaction, deep 
learning and cloud robotics.

Co-robotics
The field of telerobotics — where robots 
are remotely controlled by humans — has a 
rich history, spanning from WWII to recent 
advances in drones, undersea unmanned 
submarines, planetary rovers and surgical 
assist robots1. In 1994, recognizing that 
a huge fraction of the cost of industrial 

robots was spent on cages and sensors to 
keep humans safely away from them, a 
General Motors initiative sought to design 
a new class of safe human-assist robots, 
which led to the word ‘cobot’ being coined 
(and patented) in 1996 by J. Edward Colgate 
and Michael Peshkin at Northwestern 
University. Hami Kazerooni was doing 
similar work on human exoskeletons  
at UC Berkeley.

In 1999 Intuitive launched the da Vinci 
Surgical System, a minimally invasive robot 
fully controlled by human surgeons who 
work in the operating room with greatly 
enhanced ergonomics2. This collaborative 
human–robot system is now used in almost 
a million operations per year.

In 2004, Georges Giralt and Félix 
Ingrand co-edited a special issue of the 
IEEE Robotics and Automation Magazine 
on ‘human-friendly’ robots with input 
from researchers on several European 
projects. In September 2009, a group of 
roboticists led by Henrik Christensen 
published a roadmap for American 
robotics research3 that emphasized the 
importance of ‘co-robots’: robots that work 
directly or alongside people. This was 
partly motivated by the recognition that 
US funding agencies, specifically the US 
National Science Foundation (NSF), had 
little enthusiasm for funding technologies 
that could exacerbate unemployment. This 
led to the creation of the US NSF National 

The Telegarden, a cloud robot that allowed anyone online to plant and water seeds in a living garden 
(online from 1995–2004)23. Credit: Robert Wedemeyer
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Robotics Initiative, which began in 2011 
and continues today.

Pioneers of this trend introduced the 
term ‘collaborative robot’ to characterize 
robots designed to work alongside humans, 
with compliant joints and sensors to detect 
collisions and stop before humans could be 
harmed. In 2010 Willow Garage announced 
the personal robot PR2, a two-armed robot 
with a mobile base. In 2011 Rodney Brooks 
introduced a lower-cost version, the Baxter, 
designed to carry out a range of repetitive 
industrial tasks for small and medium-sized 
companies. This triggered a wave of research 
projects that explored issues around safety in 
robots4, as well as the potential of robots to 
learn from humans.

Since then, major robot companies 
FANUC, KUKA/Midea, ABB and Omron 
Adept have introduced collaborative robots, 
as have new robot companies Universal 
Robots, Fetch, Franka Emika and Kinova5. 
Collaborative robotics has become a 
fast-growing sector of the market and 
there is at least one industry trade show 
devoted to it6. In the past decade there has 
also been dramatic progress in robotic 
exoskeletons for assisting human workers 
and people with disabilities. Today, many 
industry labs and university research 
groups have initiated major projects to 
advance collaborative robot hardware7 
where humans work with robots to perform 
assembly, inspection and warehouse  
order fulfilment.

human–robot interaction
The field of human–computer interaction 
(HCI) originated with ‘man–machine 
interfaces’ in the 1960s, but it wasn’t 
until 2005 that the first human–robot 
interaction (HRI) conference was organized 
to focus on research into assessment and 
design of such interactions, reporting 
studies with children, adults and senior 
citizens interacting with humanoid robots 
to workers interacting with industrial 
robot arms. This subfield, ranging from 
the design of hardware to verbal and 
physical interactions, includes researchers 
in robotics, HCI, ergonomics, artificial 
intelligence (AI), engineering, and social 
and behavioural sciences. Two main areas 
of interdisciplinary research are systematic 
studies of how humans respond to robot 
appearance and behaviour (related to the 
well-known ‘uncanny valley’ effect) and 
the formulation of models for how robots 
can explicitly represent and make their 
intentions legible to humans8. HRI research 
seeks to optimize the collaboration between 
humans and robots and also addresses the 
next topic: how humans can actively  
teach robots.

Machine learning and robot learning
As is well-known, the current wave of 
interest in AI was sparked in 2012 with 
breakthrough results in computer vision 
enabled by ‘deep’ (many-layered) neural 
networks9. This subfield is known as 
‘deep learning’ (I wish we could use the 
more descriptive term ‘hyper-parametric 
function approximation’, but it’s not 
nearly as catchy). Neural network and 
connectionist models of machine learning 
have a long history dating back to the 
1950s. Making full use of the rise of 
computing power, mobile networking, 
availability of data and storage capabilities, 
deep learning was able to outperform all 
previous image classification algorithms 
in a major benchmark competition called 
ImageNet. Essential to its success was the 
availability of millions of labelled images for 
training, which required substantial input 
from humans. Fei-Fei Li, then at Princeton 
and later at Stanford and Google Cloud, 
made use of the Amazon crowdsourcing 
platform Mechanical Turk to incentivize 
and distribute human collaboration to 
produce the massive labelled image dataset 
known as ImageNet10.

Human collaboration also forms the 
foundation for ‘imitation learning’, where 
control policies are computed based 
on analysing video or motion-capture 
recordings of human demonstrations of a 
task such as assembly. This is an alternative 
to pure ‘reinforcement learning’, where 
robots experiment on their own to discover 
control policies. Imitation learning can 
be far more sample efficient but requires 
converting human demonstrations into 
control policies, which, given high-
dimensional images as input, outputs robot 
control signals. There is a resurgence of 
interest in two variants of imitation learning: 
off-policy (passively observing human 
demonstrations) and on-policy (actively 
soliciting corrective feedback from humans).

By far the most active application for 
imitation learning is autonomous driving, 
where the behaviour of human drivers is 
recorded over millions of miles. The inputs 
in this case are data from cameras and 
lidar sensors, and the control output is the 
steering angle, acceleration and braking 
controls applied by the human driver. The 
‘state space’ of an automobile based on these 
data is staggeringly vast.

Consider that the number of black and 
white low-resolution (10 pixels ×  10 pixels) 
images is 2100. This colossal number is 
dwarfed by the number of colour images. 
This means that the number of examples 
a driving system can learn from is an 
extremely minute fraction of the potential 
images that might be encountered in 

practice. So a self-driving car must learn 
to generalize from an extremely limited 
sample. In contrast to many corporate 
proclamations and popular press articles, 
most researchers working in robotics are 
highly sceptical of widely cited claims that 
fully driverless (level 5 autonomy) vehicles 
will be practical in the next decade  
(Rodney Brooks provides many insights  
on his blog11).

Rumour has it that certain driverless taxi 
systems to be released in the US in the near 
future will rely on a small army of human 
tele-operators who continuously monitor 
video footage from each car, ready to take 
control at short notice. This will require the 
human tele-operators to quickly assess and 
respond to such incidents without fatigue 
and on reliable, low-latency networking.

Several projects that apply deep learning 
to robot tasks such as grasping and assembly 
using ‘end-to-end’ learning, from pixels to 
policies, have shown promise, and the first 
Conference on Robot Learning (CoRL) was 
held in 2017. The competition to collect 
vast training datasets led automakers such 
as Tesla to begin uploading data from the 
drivers of all its vehicles on a daily basis. 
These human data are centrally used to 
update deep learning parameters that are 
periodically downloaded back to Tesla 
vehicles in an ongoing collaborative form of 
robot learning.

Cloud and fog robotics
In 1994, my students and I connected an 
industrial robot to the Internet, allowing 
anyone in the world to operate it from 
any browser to plant and water seeds in a 
living garden (pictured). The Telegarden 
was online 24 hours a day for nine years, 
and operated by over 100,000 people, more 
than any other robot in history12. Building 
on our experience with the Telegarden in 
the 1990s, my lab initiated several research 
projects in collaborative telerobotics, where 
multiple human operators shared control 
of a single remote robot via the Internet13. 
We explored algorithms and formal models 
for systems like Cinematrix, where humans 
collaborate to track a desired trajectory14, 
experimenting with a system we called the 
Tele-Actor, where a skilled human equipped 
with cameras, microphones and wireless 
communications moves through and 
interacts with a difficult-to-access remote 
environment such as a cave, integrated 
circuit lab or rainforest. First-person video 
and audio was transmitted to a base station 
and then broadcast over the Internet 
to hundreds of online participants who 
interact with each other and with the remote 
environment by voting on goals for the 
human Tele-Actor15.
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In subsequent years, many roboticists 
experimented with ‘swarm robots’ — groups 
of machines that interact based on common 
laws analogous to ants or bees — and Kiva 
Systems emerged in 2004, using central 
computing to coordinate hundreds of  
mobile robots in warehouses. In 2010, as the 
second wave of the Internet expanded rapidly 
with mobile phones and cloud computing, 
the term ‘cloud robotics’ was coined by James 
Kuffner, later defined as16: “Any robot system 
that relies on either data or code from a 
network to support its operation, i.e., where 
not all sensing, computation, and memory is 
integrated into a single standalone system.” 
Researchers including Raff D’Andrea in 
Europe created RoboEarth in 2009 and in 
2017 companies such as iRobot and Siemens 
launched major cloud robotics projects. In 
2018 Anki launched the Vector, the first 
consumer home cloud robot, and in 2019 
Google will release a cloud robotics developer 
platform with free resources for collective 
map-making and object identification.

In 2012, engineers at Cisco coined the 
term ‘fog computing’ as an extension to 
cloud computing to describe systems that 
distribute resources between cloud-based 
data centres and edge devices17 to enhance 
performance, reliability and security. 
Perhaps an analogous term — ‘fog robotics’ 
— could describe the next generation of 
distributed robot systems18.

robotics and human intelligence
The return to collaborative robotics is also 
consistent with several emerging subfields 
of research that recognize the unique 
ability of humans to adapt perception and 
control in unstructured and non-repetitive 

tasks. Despite enormous progress in robot 
sensing, learning and control, robots cannot 
fully replace the unique perception and 
communication skills of humans.

A possible way forward is shown by new 
research into combinations of robots and 
humans that incorporate insights in collective 
human intelligence19. Collective intelligence 
builds on results in group psychology, 
anthropology, ecology, political science, 
sociology and business management theory to 
study and model the performance of human 
teams for innovation and problem solving20. 
In contrast to a hypothetical sci-fi ‘singularity’ 
where superhuman AI and robot systems 
surpass humans21, I propose a constructive 
and inclusive alternative: ‘multiplicity’, where 
humans collaborate with AI and robots to 
mutually complement each other22.

Considered together, robots will enhance 
human work and life rather than replace us 
in our homes, hospitals, factories, farms and 
freeways, suggesting a future where robots 
are more social than solitary. ❐
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