
SWIRL: A Sequential Windowed Inverse
Reinforcement Learning Algorithm for Robot

Tasks With Delayed Rewards

Sanjay Krishnan, Animesh Garg, Richard Liaw, Brijen Thananjeyan,
Lauren Miller, Florian T. Pokorny∗, Ken Goldberg

The AUTOLAB at UC Berkeley (automation.berkeley.edu)
∗CAS/CVAP, KTH Royal Institute of Technology, Stockholm, Sweden

Abstract. Delayed rewards and overfitting to training data are key challenges in
robot learning. We present Sequential Windowed Inverse Reinforcement Learn-
ing (SWIRL), a three phase algorithm designed with the challenges in mind.
SWIRL learns policies for sequential robot tasks using a given set of demonstra-
tions. SWIRL first decomposes the task into sub-tasks based on Switched Lin-
ear Dynamical transitions that consistently occur across demonstrations. SWIRL
then uses the inferred sequential structure to learn a sequence of local reward
functions and augments the state-space with additional states to handle global de-
pendencies. Finally, SWIRL applies policy learning to each window to compute
a policy that maximizes the rewards. We compare SWIRL (demonstrations to
segments to rewards to policies) with Supervised Policy Learning (SPL - demon-
strations to policies) and Maximum EntropyIRL (demonstrations to rewards to
policies) on standard Reinforcement Learning benchmarks: Parallel Parking with
noisy dynamics, Two-Link acrobot, and a 2D GridWorld. We find that SWIRL
converges to similar success rates (60%) with about 3x fewer time-steps as com-
pared to MaxEnt-IRL, and converges to solution with 5x fewer demonstrations
that SPL. At the same time SWIRL is more robust to noise than SPL, hence
combining the best properties of both SPL (higher reward) and Maxent-IRL (bet-
ter generalization). In physical experiments using the da Vinci surgical robot,
SWIRL learns policies that generalize from linear cutting demonstrations to cut-
ting sequences of curves where SPL fails.

1 Introduction

A primary objective of robot learning from demonstrations is to learn policies that gen-
eralize beyond the provided examples and are robust to perturbations in initial con-
ditions, the environment, and sensing noise [1]. A popular approach is Inverse Rein-
forcement Learning (IRL), where the demonstrator is optimizing an unknown reward
function and it is possible to infer this function from a set of demonstrations [2, 3, 4].
Once a reward is learned, given novel instances of a task, a policy can be computed
by optimizing for this reward function using an approach like Reinforcement Learning
(RL) [4].

In standard IRL, a task is modeled as an MDP with a stationary single reward func-
tion that maps state and action tuples to scalar values. This model is limited in the way

that it can represent sequential tasks, tasks where a robot must reach a sequence of in-
termediate state-space goals. The sequential structure can facilitate learning because the
inferred reward may be delayed and reflect a quantity observed after all of the goals are
reached, thus making it very difficult to optimize directly. Furthermore, there may not
exist a single stationary policy (a time-invariant map between states and actions) that
achieves all of the goals in sequence, e.g., a figure-8 trajectory in the x,y plane.

One option in such a setting is to divide the task into segments with local reward
functions. In existing work on multi-step IRL, this sequential structure is defined man-
ually [2]. We propose an approach that automatically learns sequential structure and
assigns local reward functions to segments. The combined problem is nontrivial be-
cause solving k independent problems neglects the shared structure in the value func-
tion during the policy learning phase (e.g., a common failure state). However, jointly
optimizing over the segmented problem inherently introduces a dependence on history,
namely, any policy must complete step i before step i+1. Modeling an arbitrary depen-
dence on history potentially leads to an exponential overhead of additional states. It is
important to formulate a segmentation and IRL problem where this dependence can be
represented efficiently.

Sequential Windowed Inverse Reinforcement Learning (SWIRL) is a three-phase
algorithm for learning a policy from a set of demonstrations of a sequential task. SWIRL
is based on a novel formalism for sequential tasks that represents them as a sequence of
reward functions Rseq = [R1, ...,Rk] and transition regions (subsets of the state-space)
G = [ρ1, ...,ρk] such that R1 is the reward function until ρ1 is reached, after which R2
becomes the reward and so on. SWIRL assumes that demonstrations have locally linear
dynamics w.r.t a provided feature space, are locally optimal (as in IRL), and all demon-
strations reach every ρ ∈ G in the same sequence. In the first phase of the algorithm,
SWIRL infers the transition regions using a kernelized variant of an algorithm proposed
in our prior work [5, 6]. In the second phase, SWIRL uses the inferred transition regions
to segment the set of demonstrations, and applies IRL locally to each segment to con-
struct the sequence of reward functions Rseq. In the third phase, SWIRL computes a
policy using an RL algorithm (Q-Learning) over an augmented state-space that indi-
cates the sequence of previously reached reward transition regions. We show that this
augmentation has an additional space complexity independent of the state-space and
linear in the number of rewards.

Our contributions are:

1. A new formalism for sequential robot tasks, where a task is modeled by an MDP
with a sequence of reward functions.

2. A three-phase algorithm called SWIRL to learn policies for such tasks.
3. An extension of the Transition State Clustering algorithm that relaxes the local-

linearity assumption using kernelization.
4. A novel state-space augmentation to enforce sequential dependencies using binary

indicators of the previously completed segments, which can be efficiently stored and
computed based on the first phase of SWIRL.

5. Simulation and Physical experiments comparing SWIRL with Supervised Learning
and MaxEnt-IRL.

2 Related Work

The seminal work of Abbeel and Ng [4] explored learning from demonstrations using
Inverse Reinforcement Learning. In [4], the authors used an IRL algorithm to infer the
demonstrator’s reward function and then an RL algorithm to optimize that reward. Our
work re-visits this two-phase algorithm in the context of sequential tasks. It is well-
established that RL problems often converge slowly in complex tasks when rewards are
sparse and not “shaped” appropriately [7, 8]. These issues are exacerbated in sequential
tasks where a sequence of goals must be reached. Related to this problem, Kolter et al.
studied Hierarchical Apprenticeship Learning to learn bipedal locomotion [2], where
the algorithm is provided with a hierarchy sub-tasks. These sub-tasks are not learned
from data and assumed as given, but the algorithm infers a reward function from demon-
strations. SWIRL applies to a restricted class of tasks defined by a sequence of reward
functions and state-space goals.

On the other hand, there are have been some proposals in robotics to learn motion
primitives from data, but they largely assume that reward functions are given (or the
problem can be solved with planning-based methods). Motion primitives are example
trajectories (or sub-trajectories) that bias search in planning towards paths constructed
with these primitives [9, 10, 11]. Much of the initial work in motion primitives consid-
ered manually identified segments, but recently, Niekum et al. [12] proposed learning
the set of primitives from demonstrations using the Beta-Process Autoregressive Hid-
den Markov Model (BP-AR-HMM). Calinon et al. [13] proposed the task-parametrized
movement model with GMMs for action segmentation. Both Niekum and Calinon con-
sider the motion planning setting in which analytical planning methods are used to solve
a task and not RL. SWIRL considers a setting where the dynamics of the environment
are noisy. Konidaris et al. studied the primitives in the RL setting [14]. However, this
approach assumed that the reward function was given and not learned from demonstra-
tions as in SWIRL. Another relevant result is from Ranchod et al. [15], who use an IRL
model to define the primitives–this is in contrast to the problem of learning a policy
after IRL.

3 Problem Statement and Model

3.1 Task Model

We consider the class of tasks that can be defined by a finite-horizon Markov Decision
Process (MDP):

M = 〈S,A,P(·, ·),R,T 〉,

where S is the set of states (continuous or discrete), A is the set of actions (finite and
discrete), P : S×A 7→ Pr(S) is the dynamics model that maps states and actions to a
probability density over subsequent states, T is the time-horizon, and R is a reward
function that maps trajectories of length T to scalar values.

In particular, we focus on sequential tasks wherein the reward is accumulated se-
quentially. Let Rseq = [R1, ...,Rk] be a sequence of local reward functions, where each
Ri : S×A 7→ R. Associated with each Ri is a sub-goal ρi ⊆ S. A task can be now be
represented as a sequence of sub-goals G = [ρ1, ...,ρk]. Each trajectory accumulates a
reward Ri until it reaches the sub-goal ρi and continues until ρk is reached.

A policy is deemed successful when all of the ρi ∈ G are reached in sequence.
Further, a policy is optimal when it maximizes the expected cumulative reward and is
successful. If we do not know Rseq and G, finding an optimal policy is challenging since
it requires observing the entire trajectory and measuring the accumulated reward at the
end. The key challenge in this work will be to infer Rseq and G from a given set of
demonstrations. We address a particular class of sequential tasks where the dynamics
of the system are locally linear, and this case G is described by the set of regions at
which linear regime transitions occur.

3.2 Demonstration Model

Let D be a set of demonstrations {d1, ...,dN} of a sequential task. We assume that:
1. (Consistency) Over all demonstrations, there exists a consistent partial order of ar-

rival events over the set of goals {ρ1, ...,ρk}.
2. (Local Optimality) Every demonstration is locally optimal. That is, the demonstra-

tions are a sample from policy πi such that for an MDP Mi whose reward function
is Ri, πi is the optimal stationary policy.

3. (Local Linearity) Let Π be the function class of allowed policies for the robot.
There exists a featurization function f : S× A 7→ Rp in Π such that a trajectory
xt ∈ Rp is a linear dynamical system.
These three assumptions allow us to reduce the problem of learning G to identifying

changes in dynamical motion. Consider a linear model for xt , where Ar models the
robot’s dynamics, Br models the robot’s controls, and wt is i.i.d process noise:

xt+1 = Arxt +Brut +wt .

Given this model, suppose we wanted to control the robot to a final state µi with a linear
state-feedback controller Ci, the dynamical system that would follow is:

x̂t+1 = (Ar−BrCi)x̂t +wt ,

where x̂t = xt −µi. If this system is stable, it will converge to xt = µi as t→ ∞.
Now, suppose that the system has the following switching behavior: when ‖xt −

µi‖ ≤ ε , change the target state µi to µi+1. The result would be a trajectory with locally
linear dynamics:

Ai = (Ar−BrCi)

xt+1 = Aixt +wt : Ai ∈ {A1, ...,Ak}.

The sequence [µ1, ...,µk] and their tolerances [ε1, ...,εk] define the regions [ρ1, ...,ρk].
Each ρi corresponds to regions where transitions occur Ai 6= A j. Intuitively, a change in
the reward function results in a change of policy (Ci) for a locally optimal agent. In gen-
eral, there will be infinitely many feedback laws Ci that will result in a stable controller
that converges to ρi. The choice of controller is determined by the local reward Ri. We
define generalization as an algorithm’s ability to compute a policy for a task instance
M′ with a dynamics model P′, given a set of demonstrations D collected with respect
to a task M.

4 Sequential Windowed Inverse Reinforcement Learning

Algorithm Description Let D be a set of demonstration trajectories {d1, ...,dN} of a
task with a delayed reward. Given a sequence for which we require a policy, SWIRL
can be described in terms of three sub-algorithms:
Inputs: Demonstrations D, Dynamics (Optional) P
1. Sequence Learning: Given D, SWIRL segments the task into k sub-tasks whose

start and end are defined by arrival at the sub-goals G = [ρ1, ...,ρk].
2. Reward Learning: Given G and D, SWIRL associates a local reward function with

the segment resulting in a sequence of rewards Rseq.
3. Policy Learning: Given Rseq and G, SWIRL applies reinforcement learning for I

iterations to learn a policy for the task π .
Outputs: Policy π

Phase I. Sequence Learning

SWIRL first infers the sub-goals [ρ1, ...,ρk] using an extension of our prior work on
robust task segmentation [5, 6]. The overall procedure is summarized in Phase 1.

Algorithm As in [5, 6], consider a single demonstration trajectory xt as a noisy obser-
vation from a dynamical system T :

xt+1 = T (xt)+wt ,

where wt describes an i.i.d noise process. We model this in a probabilistic way with a
joint probability density p over a window [xt−w, ...,xt] induced by the stochastic pro-
cess. Since the density is non-linear, the joint distribution p can be very complex. We
can model p as a GMM with k components: p(xt−w, ...,xt) ∼ GMM(k). This can be
interpreted as defining locally linear dynamics, since conditioned on one of the mixture
components, the conditional expectation E[xt | xt−w, ...,xt−1] is linear, resulting in our
model:

xt+1 = Aixt +wt : Ai ∈ {A1, ...,Ak}.

Using a GMM to linearize dynamics has been widely applied [16, 17, 18]. Note that we
do not need to infer the full parameters of the model {Ai} but only detect changes in
local linearity.

In typical GMM formulations, one must specify the number of mixture components
m before hand. However, we apply results from Bayesian non-parametric statistics and
jointly solve for the component locations and the number of components with a soft
prior over the number of clusters using an algorithm called DP-GMM [19]. GMM-based
approaches can over-segment in some problems, but we have found them to be the most
reliable and easiest to tune in variety of problem settings with varying dimensionality
and feature scaling.

Relaxing Local Linearity In [5, 6], we assumed that each segment has locally linear
dynamics. We relax the linear dynamics assumption with a kernel embedding of the tra-
jectories. SWIRL does not require learning the exact regimes Ai, it only needs to detect

Phase 1: Sequence Learning
Data: Demonstration D

1 Γ ← Set of all windows of size w [xt−w+1, ...,xt]
2 Θ ← Fit DP-GMM to Γ and find all (xt , t) where (xt+1, t +1)

is assigned to a different cluster.
3 Apply hierarchical clustering algorithm in [5] to Θ

4 Prune clusters that do not have one (xt , t) ∈Θ from all demonstrations.
5 The result of 4 is G = [ρ1,ρ2, ...,ρm] where each ρ is a disjoint ellipsoidal region of the

state-space and time interval.
Result: G

changes in dynamics regime. The basic idea is to apply Kernelized PCA to the features
before hierarchy learning, an-oft used technique in computer vision [20]. By changing
the kernel function (i.e., the similarity metric between states), we can essentially change
the definition of local linearity.

Let κ(xi,x j) define a kernel function over the states. For example, if κ is the radial

basis function (RBF), then: κ(xi,x j) = e
−‖xi−x j‖22

2σ . κ naturally defines a matrix M where:
Mi j = κ(xi,x j). The top p′ eigenvalues define a new embedded feature vector for each
ω in Rp′ . We can now apply the Sequence Learning in this new embedding (Phase 1).

Correspondence We model the transitions as instantaneous, and thus, in each demon-
stration, we have a discrete set of transition time points {0, ...,T}. We would like to be
able to translate these times to state-space conditions for reward transitions [ρ1, ...,ρk].
The set of transition states across all demonstrations induces a density over the feature-
space and time. We model this density as a Gaussian Mixture Model with k mixture
components {m1, ...,mk} over the feature-space and time. This is learned with a two-
step DP-GMM clustering described in [5], and the basic idea is to first cluster in the
state-space and apply the algorithm again to cluster in time, conditioned on the state-
space cluster. Therefore, each of the mixture components is a Gaussian distribution
defining a region of the feature space and a time interval. Thus, the result is exactly the
set of transition regions: G = [ρ1,ρ2, ...,ρk].

Phase II. Reward Learning

After Phase I, each demonstration is segmented into k sub-sequences. Phase II uses the
learned [ρ1, ...,ρk] to construct the local rewards [R1, ...,Rk] for the task. The Algorithm
is summarized in Phase 2. SWIRL has two variants: when a dynamics model P is given,
SWIRL applies Maximum Entropy IRL, and when the dynamics model is null (not-
provided), SWIRL computes a quadratic reward around the next sub-goal.
Model-based: MaxEnt-IRL For the model-based approach, we use Maximum En-
tropy Inverse Reinforcement Learning (MaxEnt-IRL) [21]. The idea is to model every
demonstration di as a sample from an optimal policy. One way to interpret this sample
is that there exists a optimal trajectory d∗ (in the space of all trajectories), i.e., the one
that achieves the maximal reward. Each di that is observed is a noisy observation d∗.

In principle, one can estimate d∗ from a set of demonstrations, and then use d∗ to
derive a reward function. However, since each di is a path through a possibly discrete

Phase 2: Reward Learning
Data: Demonstration D and sub-goals [ρ1, ...,ρk]

1 Based on the transition states, segment each demonstration di into k sub-sequences where
the jth is denoted by di[j].

2 If dynamics model is available, apply MaxEnt-IRL to each set of sub-sequences 1...k.
3 If the dynamics model, is not available compute Equation 1 for each set of subsequences.

Result: Rseq

state and action space, we cannot simply average them to fit a distribution. Instead, the
observed data are modeled as generated with probability:

P(di|R) ∝ exp{
T∑

t=0

R(st ,at)}

Paths with a higher cumulative reward are more likely.
MaxEnt-IRL uses the following linear parametrized representation:

R(s,a) = f (s,a)T
θ

where f (s,a) is the same feature vector representation used in Phase 1. The resulting
form is:

P(di|R) ∝ exp{
T∑

t=0

f (si,ai)
T

θ}

and MaxEnt-IRL proposes an algorithm to infer the θ that maximizes the posterior
likelihood. This posterior inference procedure requires a dynamics model.

SWIRL applies MaxEnt-IRL to each segment of the task. First, applying MaxEnt-
IRL to the sub-sequences of demonstrations between 0 until reaching ρ1, and then from
ρ1 to ρ2 and so on. The result is an estimated local reward function Ri modeled as a
linear function of states that is associated with each ρi.

Model-free: Local Quadratic Rewards When a dynamics model is not available,
SWIRL uses a model-free approach for reward construction. The role of the reward
function is to guide the robot to the next transition region ρi. SWIRL treats the robot’s
current state (in feature space), and its negative Euclidean distance to the ρi as the
reward. For each [ρ1, ...,ρk], find the cluster centroids [µ1, ...,µk]. For the segment i, we
can define a reward function as follows:

Ri(s,a) =−‖ f (s,a)−µi‖2
2

A problem with using Euclidean distance directly is that it uniformly penalizes dis-
agreement with µ in all dimensions. During different stages of a task, some features will
likely naturally vary more than others. To account for this, SWIRL scales this function
by a matrix Qi:

Ri(s,a) = (f (s,a)−µi)
ᵀQ−1

i (f (s,a)−µi) (1)

Qi[j, l] = cov(f j, fl),

Phase 3: Policy Learning
Data: Transition States G, Reward Sequence Rseq, exploration parameter ε

1 Initialize Q(
(s

v
)
,a) randomly

2 foreach iter ∈ 0, ..., I do
3 Draw s0 from initial conditions
4 Initialize v to be [0, ...,0]
5 Initialize j to be 1
6 foreach t ∈ 0, ...,T do
7 Choose best action a based on Q or random action w.p ε .
8 Observe Reward R j
9 Update state to s′ and Q via Q-Learning update

10 If s′ is ∈ ρ j update v[j] = 1 and j = j+1

Result: Policy π

where Q is a p× p matrix defined as the covariance of all of the states in the segment
i−1 to i. Intuitively, if a feature has low variance during this segment, deviation in that
feature from the desired target it gets penalized.

For example, suppose one of the features j measures the distance to a reference
trajectory ut . Further, suppose in step one of the task the demonstrator’s actions are
perfectly correlated with the trajectory (Qi[j, j] is low where variance is in the distance)
and in step two the actions are uncorrelated with the reference trajectory (Qi[j, j] is
high). Thus, Q−1 will respectively penalize deviation from µi[j] more in step one than
in step two.

Phase III. Policy Learning

In Phase III, SWIRL uses the learned transitions [ρ1, ...,ρk] and Rseq as rewards for
a Reinforcement Learning algorithm. In this section, we describe learning a policy π

given rewards Rseq and an ordered sequence of transitions G.
However, this problem is non trivial since solving k independent problems neglects

potential shared value structure between the local problems (e.g., a common failure
state). Furthermore, simply taking the aggregate of the rewards can lead to inconsisten-
cies since there is nothing enforcing the order of operations. The key insight is that a
single policy can be learned jointly over all segments over a modified problem where
the state-space with additional variables that keep track of the previously achieved seg-
ments. To do so, we require an MDP model that also captures the history of the process.
MDPs with Memory RL algorithms apply to problems that are specified as MDPs.
The challenge is that some sequential tasks may not be MDPs. For example, attaining a
reward at ρi depends on knowing that the reward at goal ρi−1 was attained. In general,
to model this dependence on the past requires MDPs whose state-space also includes
history.

Given a finite-horizon MDP M as defined in Section 3, we can define an MDP MH
as follows. Let H denote set of all dynamically feasible sequences of length smaller
than T comprised of the elements of S. Therefore, for an agent at any time t, there is a
sequence of previously visited states Ht ∈H. The MDP MH is defined as:

MH = 〈S×H,A,P′(·, ·),R(·, ·),T 〉.

For this MDP, P′ not only defines the transitions from the current state s 7→ s′, but also
increments the history sequence Ht+1 = Ht t s. Accordingly, the parametrized reward
function R is defined over S, A, and Ht+1.

MH allows us to address the sequentiality problem since the reward is a function
of the state and the history sequence. However, without some sort of a parametrization
of Ht , directly solving this MDPs with RL is impractical since it adds an overhead of
O(eT) states.

Policy Learning Using our sequential task definition, we know that the reward transi-
tions (Ri to Ri+1) only depend on an arrival at the transition state ρi and not any other
aspect of the history. Therefore, we can store a vector v, a k dimensional binary vector
(v ∈ {0,1}k) that indicates whether a transition state i ∈ 0, ...,k has been reached. This
vector can be efficiently incremented when the current state s ∈ ρi+1. Then, additional
complexity of representing the reward with history over S×{0,1}k is only O(k) instead
of exponential in the time horizon.

The result is an augmented state-space
(s

v

)
to account for previous progress. Over

this state-space, we can apply Reinforcement Learning algorithms to iteratively con-
verge to a successful policy for a new task instance. SWIRL applies Q-Learning with
an Radial Basis Function value function representation to learn a policy π over this
state-space and the reward sequence Rseq. This is summarized in Algorithm 3.

5 Experiments

We evaluate SWIRL with a series of standard RL benchmarks and in a physical experi-
ment on the da Vinci surgical robot.

5.1 Methodology

All of the experimental scenarios followed a similar pattern: (1) start with an RL prob-
lem with a delayed reward, (2) generate N demonstration trajectories with motion plan-
ning in simulated scenarios and kinethestic demonstration in the phsyical experiments,
(3) apply SWIRL, (4) evaluate the performance of the policy as a function of the I iter-
ations. For all convergence curves presented, we show the probability of task success as
a function of the number of RL iterations. For convergence rate, we measure the Area
Under Curve of the learning curve (i.e., cumulative expected reward over the learning
epoch).
The algorithms considered in the experiments are:
1. Q-Learning: This applies a Q-Learning algorithm with the same hyper-parameter

setting as SWIRL.
2. Pure MaxEnt-IRL: Given N demonstrations this learns a reward using MaxEnt-

IRL and no hierarchical structure. Then, it applies Q-Learning with the same hyper-
parameter setting as SWIRL until convergence. (Only Phase II and III)

3. SVM: Given N demonstrations this learns a policy using a multi-class SVM classi-
fier. There is no further learning after training. (Directly to Policy)

4. SWIRL (Model-Based) and SWIRL (Model-Free)

Fig. 1. GridWorld: the two goal states must be reached in sequence to receive a reward. RL algo-
rithms find an optimal stationary policy, i.e., a time-invariant function between states and actions.
In this case, Q-Learning fails to find a successful policy since a non-stationary decision is re-
quired (go right if in stage 1 of the task, go left if in stage 2). SWIRL addresses this problem by
segmenting the task and applying RL with an augemented state-space.

5.2 GridWorld

We start with an example of to illustrate how delayed rewards in sequential tasks pose
a challenge in RL. We modified a variant of one of the canonical RL domains in
RLPy [22], GridWorld, to illustrate how SWIRL addresses problems of sequentiality
(Figure 1). RL algorithms find an optimal stationary policy, i.e., a time-invariant func-
tion between states and actions. Even straight-forward sequential dependencies can in-
troduce situations where any successful policy needs to take two different actions in the
same state, depending on stage of the task.

We constructed a grid world with two goal states denoted by “0” and “1” separated
by a narrow passage to illustrate the challenge of sequential dependency. The robot can
only receive the reward at “1” if it has previously reached “0". In the (x,y) state-space,
the robot does not learn a correct stationary policy since at some states the optimal
action depends on knowing whether “0” has been reached. Thus, directly applying RL
to the this problem results in an algorithm that converges to finding only one reward.

SWIRL can address this problem. We first collect 3 demonstrations of manually
traced out paths that go to “0” and then “1”. The robot needs to know which phase of
the task it is in and during this stage which reward point is the focus. SWIRL learns three
segments, and using a reward constructed with SWIRL and an augmented state-space,
Q-Learning converges to find both rewards. Since GridWorld has known dynamics, we
used the model-based variant of of SWIRL.

5.3 Parallel Parking

We constructed a parallel parking scenario for a robot with non-holonomic dynamics
and two obstacles. The robot can control its speed (‖ẋ‖+ ‖ẏ‖) and heading (θ), and
observe its x position, y position, orientation, and speed in a global coordinate frame.
If the robot parks between the obstacles, i.e., 0 velocity within a 15◦ tolerance, the task
is a success and the robot receives a reward of 1. The robot’s dynamics are noisy and
with probability 0.1 will randomly add or subtract 5◦ degrees from the steering angle.

Fig. 2. This plot illustrates (a) the 5 demonstration trajectories for the parallel parking task, and
(b) the sub-goals learned by SWIRL.

Fig. 3. Performance on a parallel parking task with noisy dynamics with full state observations
(position, orientation, and velocity), partial observation (only position and orientation), and trans-
fer (randomly permuting the action space). Success is measured in terms of the probability that
the car successfully parked, and (M) denotes whether the approach used the dynamics model. In
the fully observed case, both the model-based and model-free SWIRL algorithms converge faster
than MaxEnt-IRL and quickly outperforms the SVM. In the partially observed case, MaxEnt-
IRL, Q-Learning, and the SVM fail–while SWIRL succeeds. Both techniques also demonstrate
comparable transferability to MaxEnt-IRL when the domain’s dynamics are perturbed.

If the robot collides with one of the obstacle or does not park in 200 timesteps the
episode ends. We call this domain Parallel Parking with Full Observation (PP-FO) (see
Figure 2). Next, we made the Parallel Parking domain a little harder. We hid the velocity
state from the robot, so the robot only sees (x,y,θ). As before, if the robot collides with
one of the obstacle or does not park in 200 timesteps the episode ends. We call this
domain Parallel Parking with Partial Observation (PP-PO).

We generated 5 demonstrations using an RRT motion planner (assuming determinis-
tic dynamics) and applied SWIRL to learn the segments. Figure 2 illustrates the demon-
strations and the learned segments. There are two intermediate goals corresponding to
positioning the car and orienting the car correctly before reversing.
Performance In the first experiment (PP-FO), we use these learned segments to con-
struct rewards in both the fully observed and partially observed problems (Figure 3). In
the fully observed problem, compared to MaxEnt-IRL, the model-based SWIRL con-
verges to a policy with a 60% success rate with about 3x fewer time-steps. The gains
for the model-free version are more modest with a 50% reduction. The supervised pol-
icy learning approach achieves a success rate of 47% and the baseline RL approach
achieves a success rate of 36% after 250000 time-steps.

In the partial observation problem (PP-PO), there is no longer a stationary policy
that can achieve the reward. The learned segments help disambiguate dependence on
history. After 250000 time-steps, the policy learned with model-based SWIRL has a

Fig. 4. Acrobot: We measured the performance of rewards constructed with SWIRL and the alter-
natives. We find that SWIRL (model-based and model-free) converges faster than MaxEnt-IRL,
Q-Learning, and the SVM. Furthermore, SWIRL requires less demonstrations, which we measure
by comparing the performance of the alternatives after a fixed 50000 time-steps and with varied
input demonstrations. We also vary the task parameters by changing the size of the second link of
the pendulum and find that the learned rewards are robust to this variation (as before comparing
the performance of the alternatives after a fixed 50000 time steps). MaxEnt-IRL shows improved
transfer performance since once the task has changed enough the segments learned during the
demonstrations may not be informative and may even hurt performance if they are misleading.

70% success rate in comparison to a <10% success rate for the baseline RL, MaxEnt-
IRL, and 0% for the SVM.

Next, we explore how well the constructed rewards transfer if the dynamics are
changed in the fully observed setting. We expect MaxEnt-IRL to transfer well because it
learns a delayed reward, which tends to encode success conditions and not task-specific
details. After constructing the rewards, we randomly perturbed the system dynamics by
introducing a bias towards turning left. We find that the model-based SWIRL technique
transfers to this domain comparably to MaxEnt-IRL until the task is so different that
the sub-goals learned with SWIRL are no longer informative. The model-free SWIRL
algorithm converges more slowly–requiring 20% more time-steps to converge to the
same success rate.

5.4 Acrobot

This domain consists of a two-link pendulum with gravity and with torque controls
on the joint. The dynamics are noisy and there are limits on the applied torque. The
robot has 1000 timesteps to raise the arm above horizontal (y = 1 in the images). If
the task is successful and the robot receives a reward of 1. Thus, the expected reward
is equivalent to the probability that the current policy will successfully raise the arm
above horizontal. We generated N = 5 demonstrations for the Acrobot task and applied
segmentation. These demonstrations were generated by training the Q-Learning base-
line to convergence and then sampling from the learned policy. In Figure 4, we plot the
performance of the all of the approaches. We include a comparison between a Linear
Multiclass SVM and a Kernelized Multiclass SVM for the policy learning alternative.
In this example, we find that applying MaxEnt-IRL does not improve the convergence
rate. For this state-space, MaxEnt-IRL merely recovers the reward used in the original
RL problem. On the other hand, added segments using SWIRL improve convergence
rates.

We also vary the number of input demonstrations to SWIRL and find that it requires
fewer demonstrations than policy learning and MaxEnt-IRL to converge to a more re-
liable policy. It takes about 10x more demonstrations for the supervised learning ap-
proach to reach comparable reliability. Finally, we find that SWIRL does not sacrifice
much transferability. We learn the rewards on the standard pendulum, and then during
learning we vary the size of the second link in the pendulum. We plot the success rate
(after a fixed 50000 steps) as a function of the increase link size. SWIRL is signifi-
cantly more robust that supervised policy learning to the increase in link size and has a
significantly higher success rate than IRL for small perturbations in the link size.

5.5 Summary of Simulated Experiments

Table 1 summarizes the results of our experiments in terms of convergence rate and
maximum attained reward on the Parallel Parking domain (with and without partial
observation), Acrobot domain, and the GridWorld domains. We have additional exper-
iments using variants of GridWorld. GridWorld-2 is a substantially harder 11x10 grid
with “pits” (i.e., instant failure if reached). The Two-Bridges domain is another Grid-
World based environment in which there is a short “unsafe” path between start and goal
and a longer “safe” path (which is actually the optimal solution). Please refer to the
arXiv report [23] for more details.

Table 1. This table summarizes the convergence rate (AUC) and max reward (MAX) attained by
a Q-learning robot using the alternatives after a fixed number of iterations.

GridWorld GridWorld-2 Two-Bridges PP(FO) PP(PO) Acrobot
Max AUC Max AUC Max AUC Max AUC Max AUC Max AUC

Q-Learning 0.984 10.976 0.861 15.440 1.090 16.270 0.911 109.76 0.311 27.419 0.944 3.447
MaxEnt-IRL 0.987 299.556 0.861 16.956 0.759 16.270 0.950 299.556 0.444 33.128 0.920 44.111

SWIRL (MF) 1.830 322.125 1.764 14.070 1.751 18.953 0.991 164.127 0.934 123.115 0.906 20.935
SWIRL (MB) 1.835 514.113 1.827 28.632 1.577 17.141 0.965 514.113 0.958 333.897 0.987 65.512

5.6 Physical Experiments

In physical experiments, we apply SWIRL to learn to cut along a marked line in gauze
similar to Murali et al. [24]. This is a multi-step problem where the robot starts from a
random initial state, has to move to a position that allows it to start the cut, and then cut
along the marked line. We provide the robot 5 kinesthetic demonstrations by positioning
the end-effector and then following various marked straight lines. The state-space of the
robot included the end-effector position (x,y) as well as a visual feature indicating its
pixel distance to the marked line (pix). This visual feature is constructed using OpenCV
thresholding for the black line. Since the gauze is planar, the robot’s actions are unit
steps in the ±x,±y axes. Figure 5 illustrates the training and test scenarios.

As expected, the algorithm identifies two consistent changes in local linearity cor-
responding to the positioning step and the termination. The learned reward function for
the position step minimizes x,y, pix distance to the starting point and for the cutting step
the reward function is more heavily weighted to minimize the pix distance. We defined
task success as positioning within 1 cm of the starting position of the line and during

Fig. 5. We collected demonstrations on the da Vinci surgical robot kinesthetically. The task was
to cut a marked line on gauze. We demonstrated the location of the line without actually cutting
it. The goal is to infer that the demonstrator’s reward function has two steps: position at a start
position before the line, and then following the line. We applied this same reward to lines that
were not straight nor started in exactly the same position.

the following stage, missing the line by no more than 1 cm (estimated from pixel dis-
tance). Since we did not have a dynamics model, we evaluated the model-free version
of SWIRL, Q-Learning, and the SVM. SWIRL was the only technique able to achieve
the combined task. This is because the policy for this task is non-stationary, and SWIRL
is the only approach of the alternatives that can learn such a policy.

We evaluated the learned tracking policy to cut gauze. We ran trials on different
sequences of curves and straight lines. Out of the 15 trials, 11 were successful. 2 failed
due to SWIRL errors (tracking or position was imprecise) and 2 failed due to cutting
errors (gauze deformed causing the task to fail). 1 of the failures was on the 4.5 cm
curvature line and 3 were one the 3.5 cm curvature line.

Table 2. With 5 kinesthetic demonstrations of following marked straight lines on gauze, we ap-
plied SWIRL to learn to follow lines of various curvature. After 25 episodes of exploration, we
evaluated the policies on the ability to position in the correct cutting location and track the line.
We compare to SVM on each individual segment. SVM is comparably accurate on the straight
line (training set) but does not generalize well to the curved lines.

Curvature Radius (cm) SVM Pos. Error (cm) SVM Tracking Error (cm) SWIRL Pos. Error (cm) SWIRL Tracking Error (cm)

straight 0.46 0.23 0.42 0.21
4.0 0.43 0.59 0.45 0.33
3.5 0.51 1.21 0.56 0.38
3.0 0.86 3.03 0.66 0.57
2.5 1.43 - 0.74 0.87
2.0 - - 0.87 1.45
1.5 - - 1.12 2.44

Next, we characterized the repeatability of the learned policy. We applied SWIRL to
lines of various curvature spanning from straight lines to a curvature radius of 1.5 cm.
Table 2 summarizes the results on lines of various curvature. While the SVM approach
did not work on the combined task, we evaluated its accuracy on each individual step
to illustrate the benefits of SWIRL. On following straight lines, SVM was comparable

to SWIRL in terms of accuracy. However, as the lines become increasingly curved,
SWIRL generalizes more robustly than the SVM.

6 Discussion and Future Work

SWIRL is a three phase algorithm that first segments a task, learns local rewards, and
learns a policy. Experimental results suggest that sequential segmentation can indeed
improve convergence in RL problems with delayed rewards. Furthermore, as an algo-
rithm based in IRL, our results suggest that SWIRL generalizes beyond the provided
examples and is robust to perturbations in initial conditions, the environment, and sens-
ing noise. This paper formalizes the interaction and composability of the three phases
(sequence, reward, and policy learning), and in future work, we will explore extensions
to each of the phases. We will explore how the Q-Learning step could be replaced with
Guided Policy Search, Policy Gradients, or even an optimal control algorithm. In future
work, we will modify the segmentation algorithm to incorporate more complex tran-
sition conditions and allow for sub-optimal demonstrations. The physical experiments
in this paper present an initial demonstration of the capabilities of SWIRL, and in the
future, we will explore more robotic tasks including suturing, surgical knot tying, and
assembly. Another avenue for future work is modeling complex tasks as hierarchies of
MDPs, namely, tasks composed of multiple MDPs that switch upon certain states with
switching dynamics modeled as another MDP.

Acknowledgements: This research was performed at the AUTOLAB at UC Berkeley in affil-
iation with the AMP Lab, BAIR, and the CITRIS "People and Robots" (CPAR) Initiative in
affiliation with UC Berkeley’s Center for Automation and Learning for Medical Robotics (Cal-
MR). The authors were supported in part by the U.S. National Science Foundation under NRI
Award IIS-1227536: Multilateral Manipulation by Human-Robot Collaborative Systems, and by
Google, UC Berkeley’s Algorithms, Machines, and People Lab, Knut & Alice Wallenberg Foun-
dation, and by a major equipment grant from Intuitive Surgical and by generous donations from
Andy Chou and Susan and Deepak Lim. We thank our colleagues who provided helpful feedback
and suggestions, in particular, Pieter Abbeel, Anca Dragan, and Roy Fox.

References

1. Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A Survey of Robot Learning from
Demonstration. Robotics and Autonomous Systems 57(5) (2009) 469–483

2. Kolter, J.Z., Abbeel, P., Ng, A.Y.: Hierarchical apprenticeship learning with application
to quadruped locomotion. In: Advances in Neural Information Processing Systems 20, Pro-
ceedings of the Twenty-First Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 3-6, 2007. (2007) 769–776

3. Coates, A., Abbeel, P., Ng, A.Y.: Learning for control from multiple demonstrations. In:
Proceedings of the 25th international conference on Machine learning, ACM (2008)

4. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Pro-
ceedings of the twenty-first international conference on Machine learning, ACM (2004) 1

5. Krishnan*, S., Garg*, A., Patil, S., Lea, C., Hager, G., Abbeel, P., Goldberg, K., (*de-
notes equal contribution): Transition State Clustering: Unsupervised Surgical Trajectory
Segmentation For Robot Learning. In: International Symposium of Robotics Research,
Springer STAR (2015)

6. Murali*, A., Garg*, A., Krishnan*, S., Pokorny, F.T., Abbeel, P., Darrell, T., Goldberg, K.,
(*denotes equal contribution): TSC-DL: Unsupervised Trajectory Segmentation of Multi-
Modal Surgical Demonstrations with Deep Learning. In: IEEE Int. Conf. on Robotics and
Automation (ICRA). (2016)

7. Ng, A.Y., Harada, D., Russell, S.J.: Policy invariance under reward transformations: Theory
and application to reward shaping. In: Proceedings of the Sixteenth International Conference
on Machine Learning (ICML 1999), Bled, Slovenia, June 27 - 30, 1999. (1999) 278–287

8. Judah, K., Fern, A.P., Tadepalli, P., Goetschalckx, R.: Imitation learning with demonstrations
and shaping rewards. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, July 27 -31, 2014, Québec City, Québec, Canada. (2014) 1890–1896

9. Ijspeert, A., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning motor prim-
itives. In: Neural Information Processing Systems (NIPS). (2002) 1523–1530

10. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills
by learning from demonstration. In: IEEE ICRA. (2009)

11. Manschitz, S., Kober, J., Gienger, M., Peters, J.: Learning movement primitive attractor goals
and sequential skills from kinesthetic demonstrations. Robotics and Autonomous Systems
(2015)

12. Niekum, S., Osentoski, S., Konidaris, G., Barto, A.: Learning and generalization of complex
tasks from unstructured demonstrations. In: Int. Conf. on Intelligent Robots and Systems
(IROS), IEEE (2012)

13. Calinon, S.: Skills learning in robots by interaction with users and environment. In: IEEE
Int. Conf. on Ubiquitous Robots and Ambient Intelligence (URAI). (2014)

14. Konidaris, G., Kuindersma, S., Grupen, R., Barto, A.: Robot Learning from Demonstration
by Constructing Skill Trees. Int. Journal of Robotics Research 31(3) (2011) 360–375

15. Ranchod, P., Rosman, B., Konidaris, G.: Nonparametric bayesian reward segmentation for
skill discovery using inverse reinforcement learning. In: IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), IEEE (2015)

16. Moldovan, T., Levine, S., Jordan, M., Abbeel, P.: Optimism-driven exploration for nonlinear
systems. In: Int. Conf. on Robotics and Automation (ICRA). (2015)

17. Khansari-Zadeh, S.M., Billard, A.: Learning stable nonlinear dynamical systems with gaus-
sian mixture models. Robotics, IEEE Transactions on 27(5) (2011) 943–957

18. Kruger, V., Herzog, D., Baby, S., Ude, A., Kragic, D.: Learning actions from observations.
Robotics & Automation Magazine, IEEE 17(2) (2010) 30–43

19. Kulis, B., Jordan, M.I.: Revisiting k-means: New algorithms via bayesian nonparametrics.
arXiv preprint arXiv:1111.0352 (2011)

20. Mika, S., Schölkopf, B., Smola, A.J., Müller, K., Scholz, M., Rätsch, G.: Kernel PCA and de-
noising in feature spaces. In: Advances in Neural Information Processing Systems 11, [NIPS
Conference, Denver, Colorado, USA, November 30 - December 5, 1998]. (1998) 536–542

21. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse reinforce-
ment learning. In: AAAI Conference on Artificial Intelligence, AAAI. (2008)

22. Geramifard, A., Klein, R.H., Dann, C., Dabney, W., How, J.P.: RLPy: The Reinforcement
Learning Library for Education and Research. http://acl.mit.edu/RLPy (2013)

23. Krishnan, S., Garg, A., Liaw, R., Miller, L., Pokorny, F.T., Goldberg, K.: Hirl: Hierarchical
inverse reinforcement learning for long-horizon tasks with delayed rewards. arXiv preprint
arXiv:1604.06508 (2016)

24. Murali*, A., Sen*, S., Kehoe, B., Garg, A., McFarland, S., Patil, S., Boyd, W., Lim, S.,
Abbeel, P., Goldberg, K., (*denotes equal contribution): Learning by Observation for Surgi-
cal Subtasks: Multilateral Cutting of 3D Viscoelastic and 2D Orthotropic Tissue Phantoms.
In: IEEE Int. Conf. on Robotics and Automation (ICRA). (2015)

http://acl.mit.edu/RLPy

	SWIRL: A Sequential Windowed Inverse Reinforcement Learning Algorithm for Robot Tasks With Delayed Rewards

