
XY INTERPOLATION
ALGORITHMS

A microcomputer can be used to
control the motion of numerical con-
trol machines. This article describes a
straightforward method for approx-
imating diagonal lines and circular
motion on an XY plane.

Many numerical control machines
are powered by stepping motors.
When a pulse is sent to a stepping
motor, the stepping motor alters its
position by a unit step. Two motors
can be used to control the XY move-
ments of an arm or tool over a work-

ing plane.
If the pulses are generated by a

device which can remember or
generate a specified train of pulses,
repetitive operations such as grind-
ing, painting, or cutting can be per-
formed hundreds of times with vir-
tually no variation. A microcomputer
is an obvious choice to generate and
remember the pulses.

Since stepper motors can move on-
ly in discrete steps, we must approx-
imate the actual curve by a series of
small XY motions. Many algorithms
rely upon parametric functions such
as sine and cosine to perform the
necessary calculations. Parametric
functions, however, typically require
a high degree of numeric precision.
Calculating sine aild cosine values
with a microcomputer can be too
time-consuming to be useful in a real-
time application.

The following two algorithms re-
quire no parametric functions. This
makes them ideally suited to the
computation and memory capacities

22 ROBOTICS AGE MaY/June 1983

Kenneth and Melvin Goldberg
3913 Pine Street, Apt. F

Philadelphia, Pennsylvania 19104

of microcomputers. Since these
algorithms do not require a large
amount of complex mathematical
calculation, they are fast enough to
be used in real-time applications. The
program shown in listing 1 is written

in C for fast execution, portability,
and ease of modification. The pro-
gram, as shown, does not actually
control any stepping motors; rather,
it provides a screen display consisting
of + 1, -1, and O.In an actual control

Listing 1.

1 f**f
2: f* PROGRAt1 STEER *f
3: f* (C)M.M. and K.Y. GOLDBERG *f
4: f* This Numerical Control Program uses linear *f
5: f* interpolation to provide a flow of output *f
6: f* pulses which can be used to steer an xy table *f
7: f**f
8: #include <bdscio.h> f* micro 'c' function package *f
9 :

10:
11:
12 :
13:
14:
15:
16 :
17:
18:
19 :
20:
21:
22:
23:
24:
25: [
26 :
27:
28:
29 :
30:
31:
32:
33:
34:
35:
36:
37 :
38:]
39 :
40: dOline()
41: [
42:
43 :
44:
45:
46:
47:
48:
49:
50:
51:
52 :
53:

char templ[5],temp2[5],temp3[5],temp4[5],temp5[5],
char eia[lO],
int feedrate,drag,oil, f* vars dealing with feedrate and delay func. *f
int xl,yl, f* starting point *f
int x2,y2, f* relative position *f
int x3,y3, f* endpoint *f
int xo,yo, f* direction of output: +1, -I, or 0 *f
int dX,dy, f* differentials of x and y *f
int stepnum,
int fxy, f* value of function *f

int rad,radrad,f,a,b,d,
main(argc,argv)

int argc,
char *argv[],

printf(" STI3ER: A llUMr::RICALCONTROL PROGRAM\n"),
printf("\nInput Command line (ie, 'GOl (0,0,10,20) 100')\n: "),
scanf ("%s (~s, %s, %s, %s) %s", eia, tempI. temp2, temp3, temp4, tempS) ,
feedrate ~ atoi(temp5),
xl ~ atoi(templ),
yl ~ atoi(temp2),
x3 ~ atoi(temp3),
y3 ~ atoi(temp4),

if (! strcmp (eia, "GOI ")) doline () ,

else docircle(), .

f* interpolates impulses for a straight line *f

printf("\n\nFor EIA code '%s' with feedrate ~ ~d",eia,feedrate),
printf("\nGoing from (%d,%d) to (%d,%d):\n",xl,yl,x3,y3),

stepnum ~ x2 ~ y2 ~ fxy ~ 0,
drag ~ 100, oil ~ 1,
setdirection(),
printf("\nStep\tFXY\tX2\tY2\t\tXO\tYO"),
while ((x2 !~ dx) II (y2 I~ dy)) f* at endpoint?*f

(
delay(),

printf("\n%d\t%d\t%d\t%d\t\t",stepnum++,fxy,x2,y2),
if(fxy > 0)

54:
55:
56:
57:
58:
59:)
60:
61: setdirection()
62: (
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:)
75:
76: docircle()
77: [
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:
100:
101:
102:
103:
104:
105:
106:
107:
108:)
109:
110:
Ill: delay() /* delay loop: feedrate approx = # steps/minute */
112: (.
113:
114:
115:
116:
117:
118:
119:
120:
121:)
122:
123:
124: getdir()
125:
126: (
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:
154:)

else
(printf("ld",xo); ++x2, fxy = fxy -dy,)

[printf("\tld",yo), ++y2; fxy = fxy + dx;)

/* sets output directions and initial fxy value

dy = y3 - yl,

if(dy < 0) yo = -1;
else yo = 1;

dy = abs(dy);

dx = x3 - xl,
if(dx < 0) xo = -I,

else xo = I,

dx = abs(dx);

fxy = dx - dy,

for line */

/* Circle Routine */

stepnum = A,

x2 = xl, y2 = yl,
d = x3, rad = y3,
radrad = rad * rad;

printf("\n\nFor EIA code 'Is' with feedrate = %d",eia,feedrate),
printf("\nCircling from (ld,ld) in direction Id with radius Id:",

xl, yl ,d, rad) ,

printf("\nStep\tx2\ty2\tradius\tfxy\tdx\tdy\tf
do

(
delay(),
fxy = (x2*x2)
dx = 2*x2,

dy = 2*y2,

f = (fxy < 0)
a = (dx < 0)
b = (dy < 0)

getdir() ,

a b yo\n"),d xo

+ (y2*y2) - (radrad),

? a : 1;
? a : 1i
? a : I,

printf("\n%d\tld\tld\tld\tld\tld\tld\t%d Id Id Id
stepnum++,x2,y2,rad,fxy,dx,dy,f,a,b,d,xo,yo),

Id %d",

x2 = x2 + xo,

y2 = y2 + yo;
)

whlle«x2 != xl) II (y2 1= yl»),

int i,i = 0;

while (++i != «feedrate + drag) / 30»continue,
if(drag > 0) /* drag increases the delay at the beginning */

/* to allow for inertia in machine startup */
{
drag = drag - (oil * oil);
--oil,if (drag < 0) drag = 0;
)

/* falls off exponentially */

/* creates 'mock' binary representation of d,f,a,b */
/* and uses this to determine best output */

int binrep,
binrep = A'
xo = yo = 0,

if(d)binrep = binrep + 8;
if(f)binrep = binrep + 4,
if(a)binrep = binrep + 2,

if(b)binrep = binrep + I,

switch(binrep)
(
case 0:
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
case 14:
case 15:
)

yo = -1
xo = -1
xo = 1
yo = 1
xo = 1
yo = -1
yo = 1
xo = -1
xo = -1
yo = 1
yo = -1
xo = 1
yo = 1
xo = 1
xo = -1
yo = -1

;break,
,break,
;break;
;break;
,break,
,break,
,break,
,break;
,break,
,break;
,break,
,break;
,break;
,break,
,break,
,break,

situation,these values would be

transferredto.stepper motors or a

graphic display.

Linear Interpolation. Approx-
imating diagonal lines with unit steps
in two dimensions canbe accom-
plished with the following algorithm.

1. Define the starting position
(Xl,Yl) and ending position
(X3,Y3). Define the feed rate (f).
Feed rate is the speed at which the
tool being controlled moves. The
Electronic Industries Association

(ElA) recommends the following
notation for linear interpolation:

Gal (Xl, Yl, X3, Y3) f

where

Xl,Yl is starting position
X3,Y3 is ending position
f is feed rate

2. Initialize variables. Set the cur-
rent relative position (X2,Y2) of the
tool to(0,0).This effectively sets
the current tool position to the
starting point. Set the step count
number to zero.

3. Calculate the direction in which
to move the tool. When following a
straight line from one point to
another, all X motion is in the same
direction, asisallY motion. The
direction is determined by the sign
of the difference (DX and DYj be-
tween the ending and the starting
positions. DX=X3- Yl. DY = Y3
-Yl.

4. Calculate the difference be-
tween the absolute values of DX
and DY. This determines FXY, a
variable which is used to control
the movements along the X and Y
axes. FXY=\DX!-jDY\.

5. Generate output pulses to move
the tool until the endpoint is
reached. This is the heart of the
program. The proportionate stream
ofXY pulses is generated by man-
ipulating variable FXY. Each time a

24 ROBOTICS AGE May/June 1983

B>steer
STEER: A NUHERICAL CONTROL PROGRAM

Input Command line (ie, 'GOI (O,O,lO,20) 100')
: GOI (O,O,3,-7) 300

For EIA code 'GOl' with feedrate = 300
Going from (O,O) to (3,-7):

Table 1. A sample program run which draws a line between points (0,01 and (3, -71. The tool
moves with a feed rate of 300.

Table 3. Output generated by the circular interpolation algorithm for a circular curve.

Step FXY X2 Y2 XO YO
0 -4 0 0 -1

1 -1 0 1 -1
2 2 0 2 1
3 -5 1 2 -1
4 -2 1 3 -1
5 1 1 4 1
6 -6 2 4 -1
7 -3 2 5 -1
8 0 2 6 -1
9 3 2 7 1

D 1:= DX DY xwr YOU'l'

0 0 0 0 0 -1
0 0 0 1 -1 0
0 0 1 0 1 0
0 0 1 1 0 1
0 1 0 0 1 0
0 1 0 1 0 -1
0 1 1 0 0 1
0 1 1 1 -1 0
1 0 0 0 -1 0
1 0 0 1 0 1
1 0 1 0 0 -1
1 0 1 1 1 0
1 1 0 0 0 1
1 1 0 1 1 0
1 1 1 0 -1 0
1 1 1 1 0 -1

Table 2. The 16 possible arrangements of values which are generated by the circular interpola-

tion algorithm.

B>steer
STE8R: A UUM8RICAL CONTROL PROGRAM

Input Command line (ie, 'GO1 (0,0,10,20) 100')
: G03 (25,0,0,25) 100

For EIA code 'G03' with feedrate = 100
Circling from (25,0) in direction 0 with radius 25:

Step x2 y2 radius fxy dx dy f a b d xo yo

0 25 0 25 0 50 0 1 1 1 0 -1 0
1 24 0 25 -49 48 0 0 1 1 0 0 1
2 24 1 25 -48 48 2 0 1 1 0 0 1
3 24 2 25 -45 48 4 0 1 1 0 0 1
4 24 3 25 -40 48 6 0 1 1 0 0 1
5 24 4 25 -33 48 8 0 1 1 0 0 1
6 24 5 25 -24 48 10 0 1 1 0 0 1
7 24 6 25 -13 48 12 C1 1 1 0 0 1
8 24 7 25 0 48 14 1 1 1 0 -1 0
9 23 7 25 -47 46 14 0 1 1 0 C1 1
10 23 8 25 -32 46 16 0 1 1 0 0 1

11 23 9 25 -15 46 18 0 1 1 0 0 1
12 23 10 25 4 46 20 1 1 1 0 -1 0
13 22 10 25 -41 44 20 0 1 1 0 0 1
14 22 11 25 -20 44 22 0 1 1 0 0 1
15 22 12 25 3 44 24 1 1 1 0 -1 0
16 21 12 25 -40 42 24 0 1 1 0 0 1
17 21 13 25 -15 42 26 0 1 1 0 0 1
18 21 14 25 12 42 28 1 1 1 0 -1 0
19 20 14 25 -29 40 28 0 1 1 0 0 1
20 20 15 25 0 40 30 1 1 1 0 -1 0
21 19 15 25 -39 38 30 0 1 1 0 0 1
22 19 16 25 -8 38 32 0 1 1 0 0 1
23 19 17 25 25 38 34 1 1 1 0 -1 0
24 18 17 25 -12 36 34 0 1 1 0 0 1
25 13 18 25 23 36 36 1 1 1 0 -1 0

step is taken in the X direction, the
absolute value of DY is subtracted
from FXY. When FXY becomes
negative, a step is taken in the Y
direction, and the absolute value of
DX is added to FXY. The sign of
FXY determines the appropriate
step needed to approximate a
straight line.

6. A delay loop controls the feed
rate. This loop may include extra
delay for the initial steps. "Ramp-
ing up" the feed rate in this manner
is useful in real-world situations

where the inertia of a machine may
have a significant effect on the
system.

Table 1 shows the output generated
when a starting point of (0,01,an end-
ing point of (3, -71, and a feed rate of .
300 are given to the program shown
in listing 1.

Circular Interpolation. A concep-
tually similar nonparametric algo-
rithm can provide the necessary XY
steps for approximating a circular
path. The equation for a circle is:

FXY=XZ + yz - RZ

FXY=positive when (X,Y)is out-
side circle
a when (X,Y) is on cir-
cumference

negative when (X,YI is in-
side circle

DX =2X
DY = 2Y

The variable FXY determines the
direction in which the tool is moved

at each point on the circle. The mo-
tion is always perpendicular to the in-
stantaneous circular radius. The

tangent to a circle is always perpen-
dicular to the radius. The X and Y

components of the radius are defined
by the partial derivatives of FXY.

We propose to step the machine
tool around the circle by comparing
the current tool position to the ideal
radius. .We perform this comparison
by tracking the value of FXY. We
know that the tool has crossed the cir-
cumference and must be corrected

,...---

50

40

30

20

10

40 50

"G03 (50, 0,0,50) 100"

Figure 1. A portion of a circular path generated by only xy movements.

when the sign of FXY changes. The
appropriate correction (:t X, :t Y)
depends on the quadrant in which
the tool is located.

This algorithm's simplicity lies in
the fact that the only information re-
quired to determine the proper out-
put is the sign of FXY, its derivatives,
and the direction of rotation. (0=
clockwise, 1= counterclockwisel. If
we denote positive by 1 and negative
by 0, then we can organize the 16
possible combinations of values as
shown in table 2. Table 3 shows the
output generated for a typical cir-
cular approximation.

Figure 1 demonstrates the rag-
gedness found in part of an enlarged
path of a typical circle. The rag-
gedness is greatly decreased in large-
diameter circles. With a radius of

1000 steps, a circle will appear
smooth to the naked eye.

Summary. These two examples
demonstrate that regular figures can
be approximated by simple, non-
trigonometric algorithms. The
algorithms presented here can be ex-
tended to other forms such as an
ellipse. The examples also show that
the best approach to a real-world
problem may well be an approximate
arithmetic solution, rather than a
mathematically precise solution.

Acknowledgements
The authors are indebted to Frank Fran-

cisco for program assistance, Alan Krigman of
ICON Information for providing hardware
facilities, and to Eric Gray for supplying a
typewriter.

ROBOTICS AGE May/June 1983 ,25

