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Abstract— The robustness of a parallel-jaw grasp can be
estimated by Monte Carlo sampling of perturbations in pose
and friction but this is not computationally efficient. As an
alternative, we consider fast methods using large-scale super-
vised learning, where the input is a description of a local
surface patch at each of two contact points. We train and
test with disjoint subsets of a corpus of 1.66 million grasps
where robustness is estimated by Monte Carlo sampling using
Dex-Net 1.0. We use the BIDMach machine learning toolkit to
compare the performance of two supervised learning methods:
Random Forests and Deep Learning. We find that both of these
methods learn to estimate grasp robustness fairly reliably in
terms of Mean Absolute Error (MAE) and ROC Area Under
Curve (AUC) on a held-out test set. Speedups over Monte Carlo
sampling are approximately 7500x for Random Forests and
1500x for Deep Learning.

I. INTRODUCTION

In many applications, such as warehouse order fulfillment
and home decluttering, robots must be able to reliably grasp
a variety of objects in the presence of uncertainty in pose and
friction. Many robotic grasp synthesis algorithms are based
on grasp quality metrics derived from exact force closure
analysis [1], [2]. Recent work has formulated noise-models
on grasp parameters [3], [4] by treating the probability of
force closure as a random variable and sampling to estimate
the robustness of a grasp.

Random Forests are known to be effective for many Big
Data classification tasks [5], [6]. Deep Learning with large
datasets has provided impressive results in image classifi-
cation [7], [8], speech recognition [9], [10], and in some
reinforcement learning contexts [11], [12]. In this work, we
explore how Big Data machine learning can enable these
large scale supervised learning methods, Random Forests and
Deep Learning, to rapidly estimate grasp robustness. Fast and
accurate grasp robustness evaluation would be helpful for
real-time grasp adaptation algorithms [13] and would also
be useful components of robot grasp planners taking point
clouds as input.
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Fig. 1: Left: Training data for grasp robustness estimation is generated by
Dex-Net using Monte Carlo sampling. Right: Deep Learning and Random
Forests (with BIDMach) estimate grasp robustness.

Fig. 1 illustrates the approach. Let X’ parameterize a grasp
in terms of a pair of local contact patches, patch centers, and
normals. We consider a grasp robustness measure @ : X —
[0,1] which encodes the probability of the grasp achieving
force closure under random perturbations. Uncertainty is
modeled probabilistically using a graphical model which
takes into account uncertainty in friction, grasp, and object
pose. We use a dataset of 1.66 million grasps, split into
disjoint training and testing subsets, and local shape patches
extracted from Dexterity Network, Dex-Net [14], a large
scale grasp robustness estimator. For each grasp g, Dex-Net
computes Y = E[Q(g)] by sampling 100 perturbations; these
Y wvalues serve as the training labels. We learn a function
which maps a local grasp contact patch pair into an estimate
of @ using the high-performance machine learning toolkit,
BIDMach [15]. We evaluate the performance of the two
methods based on Mean Absolute Error (MAE) and ROC
Area Under Curve (AUC).

II. RELATED WORK
A. Grasp Quality Assessment

Robot grasp planning analyzes the mechanical force-
closure properties assuming the exact pose is known [2],
[16], assuming that the object is immobilized without slip
under quasistatic Coulomb friction. In this paper we explic-
itly consider perturbations in pose and friction to estimate
the quality metric of probability of force closure.



B. Grasp Planning under Uncertainty

The computation of grasp quality measures depends on
precise knowledge of quantities such as contact positions,
the object’s center of mass, friction coefficients, and surface
normal vectors at the contact points. However, uncertainty
and noise, both due to imprecision in the actuation of a
robot and due to imperfect and incomplete perception of the
environment by the robot’s sensors is unavoidable.

One option is to use probabilistic models to determine
grasps that are robust under perturbations [17], [18]. Recent
work has focused on uncertainty in pose [19], [20], [21]
and contact position [22]. In [3], [4], a probabilistic shape
model based on Gaussian Process Implicit Surfaces was
considered and [4] treated the grasp synthesis problem with a
Multi-Armed Bandit model. By sampling a large number of
grasps under a probabilistic model, these works considered
the probability of force closure.

C. Big-Data and Robotic Manipulation

Scaling effects in robotic manipulation have recently re-
ceived increased interest. Miller et al. [23] introduced one of
the earliest grasp simulators, GrasplT, and considered large
scale grasp simulation. Pokorny et al. introduced the notion
of Grasp Moduli Spaces [24] jointly modeling continuous
grasp and object deformations, allowing for continuous grasp
optimization in this space. In experiments with 100 million
grasp candidates sampled uniformly and independently from
real-world shapes, the properties of the Ferrari-Canny grasp
quality metric were found to vary smoothly over this space.
In [25], Detry et al. studied the problem of learning a
dictionary of object parts for the purpose of grasp synthe-
sis. However these methods did not consider robustness to
uncertainty.

Kappler et al. [26] studied the effectiveness of physics sim-
ulation and classical grasp quality measures on a database of
700 meshes and 300000 grasps. Using features derived from
global multi-view point-cloud templates extracted along the
robot hand’s approach direction, the authors applied Logistic
Regression and Deep Learning (using Convolutional Neural
Networks) for the binary classification task of determin-
ing grasp stability. They found through crowdsourcing that
simulation-based grasp stability labeling was more consistent
with human labeling than evaluation using classical grasp
measures. Our approach is similar except that we use a
simpler featurization that primarily uses critical information
about the local contact area of the grasp, which may be
missing from their feature template. In addition, our dataset
is more than five times larger.

Previous work explored scaling effects where large
datasets of 3D object models [27], [28], [29], [30] are used
to train grasping and manipulation policies for robots. In
particular, Mahler et al., created Dex-Net [14], a large scale
grasp and object database of more than 10000 objects and
2.5 million grasps, and showed that scaling effects in data
size beyond 1000 objects led to significant improvements in
a correlated bandit approach to optimal grasp selection. This
work uses a Cloud Robotics [31] approach to manipulation,

utilizing up to 1500 cloud-based compute nodes to compute
optimal grasps, enabled by on-demand compute capabilities
such as the Google Cloud Compute Engine and Amazon
EC2. In a Cloud Robotics context, the learned model could
be updated daily based on new data collected from robots
in the field (reported success/failure of executed grasps) and
then the model can be recomputed and downloaded by the
robots to apply locally for future grasps.

D. Implementation in BIDMach

We utilize BIDMach [15], [32], a GPU-accelerated toolkit
for running machine learning methods at scale, including
Deep Learning and Random Forests (RFs). BIDMach pro-
cesses data in minibatches for both Deep Learning and classi-
cal machine learning algorithms, including Random Forests.
It can therefore process very large datasets on machines
with modest memory. The minibatch design is common in
Deep Learning toolkits, but not so for Random Forests. All
the alternative RF implementations we are aware of require
training data to fit in memory. BIDMach by contrast can
process datasets up to available disk storage. The Deep
Learning and Random Forest implementations are both GPU-
accelerated in BIDMach, with the potential to provide up to
10x speedup over similar cost/power CPUs.

III. DEFINITIONS AND PROBLEM STATEMENT

Our goal is to learn a function that can quickly and
reliably estimate the robustness of a parallel jaw grasp,
where robustness is based on the probability of force closure
based on sampling perturbations in pose using features in the
neighborhood of the nominal grasp contact points.

Point contact model: A point-contact parallel jaw grasp
for the purpose of force-closure analysis is determined by its
contact points' ¢, co € R3, associated unit inward pointing
surface normals nq,no at those contacts and a friction
coefficient p > 0, which we assume to be identical at both
contact points. In summary, a parallel jaw grasp g is given
by a tuple ¢ = (c1,¢2,n1,n2, ) and we define the force
closure indicator Iz-(g) to be a binary variable equal to 1
if g is in force closure and 0 otherwise. We emphasize that
for a fixed g, Ipc(g) is deterministic.

Grasp patch pairs: Given a triangular mesh M describing
an object, we consider a featurization of a local grasp patch
pair characterized by its contact points ci1,c2 € M. First,
we compute the surface normals ni,ny at these two points.
Then, we choose an orientation of the tangent plane centered
at the respective points ci,co and compute k x k depth
maps Mi, M5. These maps describe the depth offset of
points on the surface mesh. To reduce the dimension of
the featurization, we then extract the discs D1, Dy inscribed
within M7, Ms. Since we consider these contacts as arising
from a parallel jaw gripper, we call the tuple of features
lpp = (9, D1, D2) = (c1, c2,n1, 12, 1, D1, D2) alocal patch
pair.

'We focus on the case of two contact points which define the principal
grasp axis for the most common robot “parallel-jaw” gripper. The principal
grasp axis can also be used for multifingered robot hands, defining the pose
of two fingers to constrain the placement of subsequent fingers.



Fig. 2: Tllustration of our probabilistic model representing the uncertainty
in grasp quality. The shaded nodes denote observed values, and blue nodes
are deterministic, known quantities. To estimate robustness, DexNet 1.0
assumes object shape is known but this will be relaxed in future work.
This model is sampled 100 times for each grasp to compute E(g).
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Fig. 3: Four examples of local shape patches (highlighted in yellow) on
object meshes from Dex-Net, with varying E(g) values. The robot’s grasp
makes contact with these objects at the center of their patches. Intuitively,
the surface patches corresponding to more robust grasps are flatter and closer
to the object’s center of mass.

Probabilistic perturbation model: We model noise in
perception and actuation of the robotic grippers using the
probabilistic graphical model depicted in Fig. 2, which is
similar to the approach in Dex-Net 1.0 [14]. A parallel jaw
gripper is abstracted as a grasp line v and contact points
c1, c2 along v. We then model noise in the grasp by means of
Gaussian noise on R® that is mapped to SE(3), the special
Euclidean group via exp : R® — SE(3) [33]. Similarly,
noise in object orientation and position is modeled via
Gaussian noise on the tangent space RS of SF(3). Finally,
we model noise in friction coefficients p by a Gaussian.

Given a grasp target configuration g, we denote by G(g)
the resulting random variable of grasp perturbations of g
with respect to our graphical model. We denote by E(g) the
empirical sample estimate for the expectation of Irc(G(g))
for 100 samples that we draw. Fig. 3 illustrates exemplar
patch pairs from our data, along with their E(g) values.

Regression formalization: The force closure indicator
Irc under this probabilistic perturbation model is a random
variable, and we explore if the quantity E[lrc(G(g))] can
be determined with high precision from grasp-patch data
lpp = (g9, D1, D2) by large-scale regression. Thus, we treat
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Fig. 4: Distribution of probability of force closure estimates F(g) in
our data, depicted as a histogram of counts. Yellow and blue indicate,
respectively, grasps that do not, and grasps that do, satisfy the friction cone
condition. The yellow distribution is extraordinarily skewed, with roughly
two million grasps accounted for by the first histogram bin. The height is
cut off at 400,000 for readability.

E[lrc(G(g))] as a deterministic function E of local patch
pair information, where

E(typ) ~ Ellrc(G(9))]-

Note that we do not know E[lrc(G(g))] exactly, and must
approximate it with F(g) using 100 samples. During com-
putation of E(g), our probabilistic model can occasionally
generate samples lying outside of the grasp patches, since
Gaussian noise has unbounded support. As an example,
our model could generate contact points that lie completely
outside of the patches that we use as features, resulting in an
incorrect measurement of F(g). However, if the grasp patch
size is chosen so that sufficiently many contact pair points
lie on the parameterized patches, £, is expected to contain
sufficient information to approximate F(g).

Eliminating Non-Robust Grasps: One way to reject non-
robust parallel jaw grasp candidates is to consider the fol-
lowing friction cone condition: is the line connecting the two
grasp contact points within both friction cones centered at the
contact points? If this is not the case for a particular grasp,
then that grasp fails this condition and in the deterministic
(but not probabilistic) setting, it is not in force closure. We
investigate the probability of force closure distribution under
this heuristic. Noisy grasps in our data that do not satisfy
the friction cone condition follow the yellow distribution in
Fig. 4 while grasps that satisfy it follow the blue distribution.
As expected, the yellow distribution is heavily skewed with
the majority of grasps having an E(g) of roughly zero.

In this paper, our main interest is in understanding the
properties of grasps that are likely to be robust, so we do
not want the data to consist overwhelmingly of non-robust
grasps. The friction cone heuristic furthermore serves as a
useful filter by ensuring that even the non-robust grasps share
a property common to all robust grasps. In addition, we
still obtain enough non-robust grasps for a balanced analysis
since the filter by itself is not strict enough to enforce
robustness. (It only keeps grasps that are in force closure
based on the mean over 100 trials, but individual trials may
not be robust.) We therefore perform all subsequent analysis
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on the 1.66 million patch pairs from the blue distribution in
Fig. 4.

Evaluation Metrics: We evaluate our algorithms using
two metrics: Mean Absolute Error (MAE) and Area Under
the Curve (AUC), where the latter is computed from a
Receiver Operating Characteristic (ROC) curve. MAE is
simple and provides intuition on the distance between our
predictions and the E(g) values. ROCs provide richer infor-
mation and also allow analysis of Type I and Type II errors,
which we discuss in Section IV-E.2. ROCs are typically
applied on binary classification tasks. While our targets are
real-valued in [0, 1], we can apply ROCs here because the
targets represent a probability (a fraction of 100 trials) of
{0, 1}-valued grasp outcomes, and they can be treated as
100 discrete trials for the purpose of computing ROCs.

IV. EXPERIMENTS
A. Local Shape and Grasp Sample Generation

To generate a training dataset D, we first extract approx-
imately 1.66 million patch pairs from 10,713 mesh models
from Dex-Net 1.0. The majority of the models come from the
SHREC 2014 Large-Scale shape retrieval benchmark (8,987
models) [34], while the remainder of the data is sampled
uniformly from the mesh models in Dex-Net 1.0.

We extract 15 x 15 depth-maps M;, M, that span a
5.0cm X 5.0cm plane tangent to the grasp approach axis
on the shape surface for each contact point following the
graphical model displayed in Fig. 2. (The 15 x 15 resolution
follows the convention of Dex-Net and is in part due to
our storage limitations.) We then extract the discs inscribed
within My, My, forming Dq, Dy. We also add the patch
orientation v = ﬁ to form an initial 289-dimensional
featurization (g,v, Dy, Dy) € R?8%. As stated earlier, for
ground truth of E[Irc(G(g))], we utilize the sample mean?
obtained by Monte-Carlo integration over 100 samples G(g)
from our generative graphical model.

We divide our data of 1.66 million grasps into a training
set of about 1.55 million grasps, a validation set of exactly
29790 grasps (about 2% of training size), and a testing
set of exactly 79000 data points. This is roughly a 95%-
5% training/validation versus testing split, though in some
experiments, we do not use the full training data so that
we can observe the effect of increasing training data size
on a fixed-size testing set. To avoid object overlap between
training/validation and testing datasets, all patches generated
from a particular Dex-Net object are entirely in the train-
ing/validation or entirely in the testing set.

B. Fixed Constant Predictor Baseline

To understand the relative benefit of our predictors, it
is useful to compare MAE results with a fixed constant
baseline. One way to do this is to compute the median E(g)
of the expected grasp quality in the entire training data, and

2The estimated standard error of this mean is at most 1/0.25/4/100 =
0.05, where 0.25 is the largest sample variance we observed (among 100
samples) in the predicted robustness for any grasp in our data.
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Fig. 5: Scatter plot of a random subset of our training grasps with respect
to their “antipodality” angle (i.e, the angle between the grasp axis and
the surface normals) and robustness. Darker areas correspond to a greater
density of grasps. For the antipodality-based estimator, we use the best-fit
line from the complete training data to predict robustness for testing grasps.

return a constant function which always outputs that median
as the prediction. This is a reasonable baseline because the
MAE of a single, scalar approximation of a set of scalar-
valued targets is minimized with the median of the elements.
Doing this, we get the baseline performance of ~ 0.316
MAE. In addition, the AUC of the corresponding ROC is
0.501, roughly at the level of random guessing.

C. Antipodality-Based Estimator

As a first attempt at estimating E'(g) we measure the angle
between the grasp axis and the surface normals. This is the
angle of the smallest friction cone such that the grasp is in
force closure; it can be thought of as a continuous metric on
antipodality. Fig. 5 plots a random subset of our training data
grasps with respect to this computed angle (or “antipodality’)
and robustness.

As can be seen, there is only a weak linear correlation
between antipodality and E(g): the correlation coefficient is
—0.46. This result is encouraging because if the computed
angle is small, the grasp should theoretically be in force
closure over larger perturbations of the surface normals and
grasp axis. As evident by the left portion of Fig. 5, however,
there is a huge spread of grasp robustness with small angles.
This suggests that our best-fit line predictor from just the
antipodality feature (plus a bias term) is limited and that we
need more information to better estimate E(g).

The antipodality-based estimator obtains 0.273 MAE and
0.704 AUC on the held-out test set of grasps. Although
this estimator outperforms the constant baseline, we hope
to improve the estimate of E(g) using additional features.

D. Regression using BIDMach

1) Random Forests: We experiment with BIDMach’s im-
plementation of the Random Forests algorithm for regression.
The two main parameters to select are the number of trees
and their depth. During preliminary trials, as tree depth
increased, validation-set MAE decreased from its initial
value of roughly 0.30 to a typical value of 0.22 to 0.23
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Fig. 6: MAE performance of Deep Learning and Random Forests on predicting grasp robustness as a function of the number of parameters (first two
subplots) or the training data size (last two subplots). In the first two subplots, the algorithms were all trained on the full training data. We varied the
Random Forests by increasing the number of trees, and Deep Learning by increasing the number of weights. (For DL, the subplot shows the total number
of hidden nodes, so a 100-60-36 architecture is reported as having 100 + 60 + 36 = 196 nodes.) In the last two subplots, the number of parameters in
each model is fixed: 20 trees for RFs (each depth 30), and a 600-360-216 architecture for DL. We augment each subplot with the constant baseline from
Section IV-B and the antipodality-based estimator from Section IV-C. Note that the y-axis scales are equivalent.
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Fig. 7: AUC performance of Deep Learning and Random Forests on predicting grasp robustness as a function of the number of parameters (first two
subplots) or the training data size (last two subplots). All four subplots show five ROC curves. In the first subplot, the number of trees are 2, 10, and 200,
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In the last two subplots, we use 20 trees in the Random Forest and a 600-360-216 Deep Learning architecture. We augment each subplot with the ROCs

for the constant baseline from Section IV-B and the antipodality-based estimator from Section IV-C. This figure must be viewed in color.

from depth 30 onward. At depth 30, BIDMach could train
20 trees at a time within our RAM constraints. More trees
can be computed by running BIDMach’s forest algorithm
multiple times, potentially on different nodes since the trees
are independent.

BIDMach’s regression mode requires target values to be
quantized, so we set the target granularity to 0.01 to match
the input granularity. (Each F(g) in our data is the number
of successes divided by 100.) Thus, for a given grasp
g as input, each tree generated from the algorithm will
predict E(g) € {0.0,0.01,0.02,...,0.99,1.00}. Then the
final estimated E(g) is the average of the F(g) estimates
from all the trees.

2) Deep Learning: We use multilayer fully connected
neural networks to learn the function E over the space of
local patches.

We train the networks with BIDMach [15], on a single
machine with two NVIDIA Titan X GPUs. We use stochas-
tic gradient descent with ADAGrad [35] diagonal scaling.
Deep networks of arbitrary topology can be constructed
in BIDMach, but it also includes convenience functions
that generate tapered (exponentially-decreasing layer size)
multi-layer networks. We found these networks gave good
performance compared to networks with arbitrary size in
each layer, and provided a single parameter (the taper) to
optimize over.

For all experiments, we use an optimized taper of ¢ =
0.6. We apply Lj-regularization of the weights. The last

layer applies the logistic loss function; it also has one unit,
representing the predicted F(g), while the input layer has
289 units. While the target value is not discrete, but a real
value in [0,1], we can apply logistic loss by invoking the
same rationale we used for ROC/AUC analysis.

We explored sigmoid, hyperbolic tangent, and rectified
linear unit (ReLU) non-linearities between fully-connected
layers in the network. We ran trials with a 600-360-216
neural network. For 500000 and 1 million training elements,
both our AUCs and MAEs on the validation set were slightly
better with the sigmoids compared to the hyperbolic tangents
or ReLLUs. Consequently, we use only sigmoids as activation
functions. We also repeated these six experiments using
dropout [36], but the AUC/MAE results did not improve so
we do not use it.

To determine other details of the architecture, we ran
preliminary trials with 500000 training cases while ranging
the number of hidden layers from two to seven. For each
layer count, we used 600 nodes in the first hidden layer
and followed the tapering strategy for the remaining layers.
Our best performance on the validation set was with three
hidden layers (AUC 0.756, MAE 0.2256), though results
were similar until seven hidden layers, where the network
may have started to overfit. From these observations, we
default to using three hidden layers (with sigmoids), resulting
in a 600-360-216 architecture.
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Fig. 8: A log-log plot representing the ROC curves for Random Forests
using 200 trees, Deep Learning with a 1600-960-570 architecture, and
the antipodality-based estimator, all trained on the entire training data. As
outlined in Section IV-E.2, the log-log scale allows us to narrow our focus
into the critical region of the graph to assess the likelihood of Type I errors.
We see that Random Forests have slightly better guarantees in this region,
though the difference may not be statistically significant.

3) Other Algorithms: We also experiment with three other
algorithms in BIDMach'’s suite: (regularized) linear regres-
sion, logistic regression, and SVM (kernel) regression. We
trained these each on the full training data using the standard
minibatch framework. We increased the number of passes
over the data up to the point when test-set MAE results
stagnated to roughly 0.285 for all three algorithms. While this
exceeds the constant baseline, the results are slightly worse
with those of the antipodality predictor from Section IV-C
and considerably worse than those from Deep Learning and
Random Forests. Thus, we do not report further on linear,
logistic, and SVM regression.

E. Performance Results

1) Mean Absolute Error (MAE): Fig. 6 shows the MAE
of Random Forests and Deep Learning on the test set of
79000 grasps. The first two subplots show how performance
varies based on the number of parameters (tree count for
Random Forests, hidden nodes for Deep Learning) when
training on the full training set. The last two subplots show
the performance as a function of the training data size for a
constant number of parameters (20 trees for Random Forests
and a 600-360-216 architecture for Deep Learning). Fig. 6 is
augmented to include the constant baseline from Section I'V-
B and the antipodality-based estimator from Section IV-C.

We see that Random Forests and Deep Learning sub-
stantially outperform the constant predictor and antipodality
baselines across all parameter counts or training data sizes
reported in Fig. 6. Comparing Deep Learning and Random
Forests, we see that the former is slightly superior to the
latter, with an edge of roughly 0.01 to 0.02 MAE once
performance has leveled off.

Algorithm Size (MB)  Train (sec)  Test (ms)

RF 20 trees, depth 30 427.53 1385 0.15
RF 200 trees, depth 30 4275.30 13850 0.21
DL 600-360-216, 10 passes 1.79 450 1.00
DL 1600-960-576, 10 passes 9.75 626 1.05

TABLE I: Four algorithms and associated model sizes (in MB),
training time (seconds), and testing time (milliseconds) benchmarks.
The training time is done with all the 1.55m training grasps, while
the testing time is reported as the average of the prediction times for
one grasp from the test set (of 79000 elements). For the Random
Forest with 200 Trees, we trained ten separate 20 Tree Random
Forests, so the training time is estimated to be a factor of ten larger.

2) Area Under the Curve (AUC) and Type I/Il Errors:
Fig. 7 is similar to Fig. 6, except that it uses ROC curves
and AUC metrics instead of MAE. For readability, we only
include three variations of Random Forests or Deep Learning
in the subplots: each shows an ROC curve corresponding to
a small amount of parameters (or data), a medium amount
of parameters (or data), and a large amount of parameters
(or data), which is useful to indicate when the algorithms
exhibit diminishing returns. Overall, Fig. 7 provides similar
conclusions as Fig. 6. The two best Deep Learning cases
have an AUC of 0.764, which is slightly better than even our
largest Random Forest with 200 trees (0.753 AUC) shown
in the first subplot.

ROC curves allow us to analyze Type I and Type II
errors. Here, a Type I error (false positive) is when one
overestimates true robustness, and a Type II error (false
negative) is when one underestimates true robustness. For a
robot grasping an object, a Type I error is worse than a Type
IT error, because the former may result in dropping objects,
but the latter may just cause the robot to overlook one of
potentially many good grasps. In Fig. 7, we find that while
the antipodality-based estimator is consistently superior to
Deep Learning and Random Forests in certain regions of the
ROC curve, it is consistently worse in the left portion, which
is the more important area since that represents the desired
low false positive rates.

Fig. 8 explores this in more detail using the 200 tree
Random Forest and the highest performing Deep Learning
model (with 0.764 AUC). The ROC curves are on a log-
log scale to “magnify” the important space of the graph.
Fig. 8 shows that Random Forests, despite having slightly
lower overall AUC than Deep Learning, have slightly better
performance in the low false positive rate region.

3) Timing and Memory: We now analyze the memory
requirements and speed of our algorithms. Table I shows
benchmarks for two representative Random Forests and Deep
Learning models that achieve similar MAE and AUC results.
We report on model size, training time, and testing time. The
model size is based on the number of nodes in Random
Forests (each 16 Bytes in BIDMach) or the number of
weights in Deep Learning (each 4 Bytes in BIDMach). The
training time is with the full training data; the Deep Learning
models are trained over 10 full passes over the data, which
is enough to cause validation set log-likelihood to converge.

As robots typically grasp one object in action, the reported
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Fig. 9: Histograms and scatter plots for absolute residuals. (Top) Subplots
representing counts of “absolute residual vectors” from the E(g) predictions
of the best DL and RF cases from Fig. 6 and Fig. 7. The component-wise
minimum vector is overlaid on both histograms. The x-axes are cut off at
0.8 for readability. (Bottom) Scatter plots showing the absolute residuals
of each learning algorithm as a function of the E(g). A random subset of
1000 test data points is shown. The blue lines are an upper bound for the
maximum possible absolute residual for a given E(g) level.

testing (i.e., E(g) prediction) time is the average time needed
to evaluate E(g) for one grasp across the 79000 testing
grasps. To make comparisons fair, the predictions are applied
on individual grasps at a time, and not done in batch mode.

Table I shows that Random Forests can take up far more
memory than Deep Learning models to achieve comparable
MAE/AUC results, but have faster evaluation speed with 0.15
and 0.21 milliseconds for RFs compared to 1.00 and 1.05
milliseconds for DL. These results makes sense because RFs
predict using fast tree traversal, but the RF trees collectively
require more memory than DL weight matrices. Dex-Net
takes approximately 1.6 seconds to estimate a single F(g).
This means that Random Forests (using the 0.21ms value)
and Deep Learning (using the 1.05ms value) are more than
7500x and 1500x faster, respectively, than Dex-Net.

F. Residuals and Failure Cases

As further exploration, for the best-performing Deep
Learning and Random Forest models from Fig. 6 and Fig. 7,
we form a vector of the predicted E(g) values on the 79000
testing grasps. Then, we take the absolute difference of
these vectors with the corresponding vector of true E(g)
values, (F(g1), E(g2),- .-, E(gr9000)), forming a vector of
the “absolute residuals.” The top half of Fig. 9 plots his-
tograms of these absolute residuals and for each, overlays a
third histogram corresponding to the vector containing the
component-wise minimums. The intuition is that the “comp-
min” histogram represents a baseline for how well both
algorithms can identify E(g) for a particular g; high values
indicate grasp feature vectors that are challenging.

The grasps corresponding to the points with large absolute
residuals in the comp-min vector are, by this particular
measure, among the most difficult grasps to predict E(g).

E(g) = 0931 Epy(g) =0.132 Eps(g) = 0.104 E(g) =0.010 Epz(g) =0.827 Erp(g) = 0.803

E(g) =0.020 Epi(g) =0.830 Egp(g) = 0.860 E(g) =0.010 Epi(g) =0.813 Egr(g) =0.825

Fig. 10: Four patch and object meshes representing “failure cases,” or
those test-set grasps in which both Deep Learning and Random Forests
poorly predicted E(g). Starting at the top left and proceeding clockwise,
the object meshes are a chopper, a plane, a bear, and a dragon. The true
E(g) values are listed below each grasp and mesh, along with the value
predicted by Deep Learning (Epr.(g)) and Random Forests (Err(g)).

In Fig. 10, we plot four of these “failure cases.” The dragon,
bear, and plane grasps represent Type I errors by both
algorithms, while the fourth (on a chopper) is a Type II error.
From these samples, we observe certain characteristics that
might intuitively indicate a failure case, such as patches that
touch steady locations of an object but on uneven or thin
surfaces (the chopper) or patches on smoother surfaces but
which are far from the center of mass (the bear).

We further analyze the absolute residuals as a function
of the target E(g) values. In the bottom half of Fig. 9,
we plot absolute residuals of 1000 random test data points.
The scatter plots show that the majority of points have
small residuals. They also have a rough “kink™ in the center
because the error is bounded by a piecewise linear function
given by f(z) = 1 —z if « € [0,0.5) and f(x) = =
if x € [0.5,1]. The scatter plots also demonstrate that the
residuals do not display unexpected behavior, a result that
also holds during our re-runs with different subsets of points.
Apart from the unavoidable kink in the center, the residuals
thus do not contain extra information that our model misses.

V. CONCLUSIONS AND FUTURE WORK

These large-scale supervised learning methods are sub-
stantially faster alternatives to Monte Carlo sampling for
estimating grasp robustness. Overall, the results support the
hypothesis that surface patch information can be used in both
RF and DL methods to rapidly infer grasp robustness. In
future work we will explore performance with other grasp
quality metrics such as Ferrari-Canny [1] and those surveyed
in [37], [38]. We will also investigate what happens when
using other patch models and when object shape varies.
Finally, we will explore how a fast robustness estimator can
be used in the inner loop for a real robot’s grasp planner that
would take as input point clouds, so as to allow fast grasping
in practice.
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