
SHIV: Reducing Supervisor Burden using Support Vectors for Efficient
Learning from Demonstrations in High Dimensional State Spaces

Michael Laskey1, Sam Staszak1, Wesley Yu-Shu Hsieh1, Jeffrey Mahler1,
Florian T. Pokorny1, Anca D. Dragan1, and Ken Goldberg1,2

Abstract— Online learning from demonstration algorithms,
such as DAgger, can learn policies for problems where the
system dynamics and the cost function are unknown. How-
ever, during learning, they impose a burden on supervisors
to respond to queries each time the robot encounters new
states while executing its current best policy. Algorithms such
as MMD-IL reduce supervisor burden by filtering queries
with insufficient discrepancy in distribution and maintaining
multiple policies. We introduce the SHIV algorithm (Svm-based
reduction in Human InterVention), which converges to a single
policy and reduces supervisor burden in non-stationary high
dimensional state distributions. To facilitate scaling and outlier
rejection, filtering is based on distance to an approximate level
set boundary defined by a One Class support vector machine.
We report on experiments in three contexts: 1) a driving
simulator with a 27,936 dimensional visual feature space, 2)
a push-grasping in clutter simulation with a 22 dimensional
state space, and 3) physical surgical needle insertion with a
16 dimensional state space. Results suggest that SHIV can
efficiently learn policies with equivalent performance requiring
up to 70% fewer queries.

I. INTRODUCTION

In model-free robot Learning from Demonstration (LfD), a
robot learns to perform a task, such as driving or grasping an
object in a cluttered environment, from examples provided by
a supervisor, usually a human. In such problems, the robot
does not have access to either the cost function that it should
optimize, nor the dynamics model. The former occurs when
it is difficult to specify how to trade-off various aspects that
matter, like a car trying to drive on the road and dodge other
cars [3]. The latter occurs when either the system or the
interaction with the world is difficult to characterize, like
when a robot is trying to grasp an object in clutter and does
not have an accurate model of the objects dynamics.

Rather than explicitly learning the cost function (like
in Inverse Reinforcement Learning [25]) and the dynamics
model, and then using optimization to produce a policy for the
task, in model-free LfD the robot learns the policy directly
from supervisor examples, mapping states to controls [4].
Learning from demonstration has been used successfully in
recent year for a large number of robotic tasks, including
helicopter maneuvering [1], car parking [2], and robotic
surgery [35].

LfD algorithms can be categorized as offline, where the
robot only observes demonstrations, or online, where the
robot interacts with the world and receives feedback from the

1 Department of Electrical Engineering and Computer Sciences;
{mdlaskey,iamwesleyhsieh,ftpokorny,anca}@berkeley.edu,
staszass@rose-hulman.edu

2 Department of Industrial Engineering and Operations Research; gold-
berg@berkeley.edu

1−2 University of California, Berkeley; Berkeley, CA 94720, USA

Fig. 1: SHIV reduces the number of queries to the supervisor in our three
test domains: a) a driving simulator where the goal is to learn a controller on
HOG features extracted from synthetic images to keep a car on a polygonal
track; b) push-grasping in clutter in a physics simulator, where the goal is to
learn a controller from human demonstrations to grasp the green object while
not letting the red square objects fall off the gray boundary representing a
table; c) learning a controller for the Da Vinci Research Kit from a senior
surgeon’s demonstrations of correcting a needle before suturing in surgery;
d) normalized performance of SHIV and DAgger’s policy on the grasping
in clutter example versus states labeled by the supervisor.

supervisor. In offline LfD, the robot learns the policy based
on a batch of examples, and then executes it to achieve the
task. During execution, a small error can accumulate, leading
the robot away from the region of the state space where it
was given examples, leading to unrecoverable failures. For
example, a robot driving may be trained on examples driving
safely down the center of a lane, but even slight deviations
will eventually put the robot into states near the side of
the road where its policy could fail [27]. Ross and Bagnell
showed the number of errors made by the robot, in the worst
case, can scale quadratically with the time horizon of the
task [28].

Online LfD addresses this issue by iteratively gathering
more examples from the supervisor in states the robot
encounters [11], [28], [29]. One such algorithm, DAgger,
learns a series of policies. At each iteration, the robot trains a
policy based on the existing examples, then rolls out (executes)

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

that policy, and the supervisor provides demonstrations for
all states the robot visits. The new state/control examples
are aggregated with the old examples for the next iteration.
DAgger and related algorithms have been applied in a
wide range of applications, from quadrotor flight to natural
language to Atari games [12], [10], [30]. In DAgger, under
certain conditions, the number of errors scales only linearly
with the time horizon of the task[29].

However one drawback is that DAgger significantly in-
creases the burden on the supervisor, who now labels all
states that the robot visits during training. Our goal is to
reduce supervisor burden without degrading performance.

Our key insight is that the robot only needs to request
demonstrations for risky states. Risk arises because: (1)
states are sufficiently different than the states previously
encountered, i.e., they can be considered novel or outliers [13];
or (2) states are in a region that has been misclassified in
previous training data.

We present an algorithm for online LfD that can actively
decide whether it is necessary to ask the supervisor to
label the new states that the robot encounters. SHIV (Svm-
based reduction in Human InterVention) reduces supervisor
burden by only requesting supervision for risky states. SHIV
uses stream-based active learning with a query selection
method that evaluates risk in a manner tailored to the
non-stationary state distributions the robot encounters as it
iteratively executes learned policies, and tailored to high
dimensional state spaces. We build on the One Class SVM
method for approximating quantile level sets [31] to provide
a classification method for deciding if a state is risky or safe.

II. RELATED WORK

Below we summarize related work in active approaches to
robot LfD and risk evaluation techniques.
Active Learning from Demonstration We formulate reduc-
ing supervisor burden in online Lfd as a stream-based active
learning problem [5], [9]. In stream based active learning,
the decision of whether to query the supervisor (for a label
or control signal) or not is not over the entire state space
(like in traditional pool-based active learning), but on states
drawn one at a time from some data stream. In online LfD,
this data stream is the states encountered when the robot is
executing the current best policy.

Aside from the data stream, stream-based active learning
has another ingredient: a query selection method, deciding
whether or not to query. Typical query selection methods
are estimator-centric, evaluating risk using the estimator, e.g.
distance from the classification hyperplane [34], as in Fig.
2(a); or query by committee [6], which uses a committee of
hypothesized estimators that are trained on different subsets of
the training data. Risk in query by committee is based on the
level of agreement or disagreement among these hypotheses,
with higher levels of disagreement for a state leading to higher
chances of querying that state (Fig. 2(b)).

Both approaches implicitly assume a stationary state
distribution that the new data is sampled from the same
distribution as the previous training data. Although such
methods have been previously proposed for online LfD
(see [8], [11] for the former and [15], [16] for the latter),
online LfD violates the stationary distribution assumption

because each new policy induces a new distribution of
states. This can have negative consequences for learning:
it has been shown that when training and test distributions
are different, query by committee can perform worse than
randomly selecting which states to query [7].

The problem lies in being estimator-centric. The estimator
is a function of the current distribution. Therefore, it no
longer provides a good measure of confidence when that
distribution changes. And the distribution does change when
the robot is rolling out a learned policy and starts encountering
further away states. Instead of relying on the estimator, our
measure of risk explicitly identifies when states are drawn
from a different distribution, i.e. when they are novel. Our
experiments in Section VI-B.1 suggest that our measure of
risk is more accurate in online LfD problems than estimator-
centric measures.
Risk via Novelty Detection The main motivation for our risk
definition is the notion that a trained model will be able to
generalize within the distribution it is trained on [33], making
states outside of this distribution risky. Novelty detection [13]
is concerned with recognizing when this happens: recognizing
that a sample is outside of this distribution.

Our work builds on Kim et al. [17] who apply novelty
detection to safe online LfD to enable a supervisor to take
over and prevent unsafe states. In their MMD-LI algorithm,
risk is evaluated with Maximal Mean Discrepancy. For a
single state, this is the sum of a kernel density estimate
and the variance of the dataset, which works well in low
dimensional state spaces. MMD-LI also reduces supervisor
burden because the supervisor only takes over in risky states,
as opposed to providing labels for all new states.

In contrast, we focus on active learning for online LfD
in high-dimensional state spaces. Unlike safe learning, our
problem does not require the supervisor to take over. This
enables us to avoid the supervisor biasing the states sampled
(which can in practice lead to a loss in performance [29]), and
also avoid assuming the supervisor is always available. On
the other hand, our problem does require novelty detection in
high dimensional state spaces, where non-parametric density
estimation does not scale very well: it can require data
exponential in the dimension of the state space [22]. Our
results (Section VI-B.1) suggests that in our high dimensional
state spaces, SHIV achieves an error rate half of that of kernel
density estimate-bases techniques like MMD.

An alternative to kernel density estimates is to measure
distance to its nearest neighbors [20]. However, this approach
was shown to be susceptible to issues, since nearest neighbors
incorporates only local information about the data. For
example, a group of outliers can be close together, but
significantly far from the majority of the data and nearest
neighbors would mark them as not novel [13].

Our approach is based on the One Class SVM proposed
by Scholköpf et al., which estimates a particular quantile
level set for the training data by solving a convex quadratic
program to the find support vectors [31]. The method
has been theoretically shown to approximate the quantile
levelset of a density estimate asymptotically for correctly
chosen bandwidth settings and in the case of a normalized
Gaussian kernel function [36]. In [24], the One Class SVM
has furthermore been used for novelty detection in high-

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

dimensional image data. To our knowledge, incorporating
a query selection method for high-dimensional spaces and
nonstationary distributions, such as the One Class SVM, into
online LfD is a novel contribution.

III. PROBLEM STATEMENT

The goal of this work is to learn a policy that matches that
of the supervisor’s while asking the supervisor for as few
examples as possible.
Modeling Choices and Assumptions We model the system
dynamics as Markovian, stochastic, and stationary. Stationary
dynamics occur when, given a state and a control, the
probability of the next state does not change over time. Note
this is different from the non-stationary distribution over the
states the robot encounters during learning.

We model the initial state as sampled from a distribution
over the state space. We assume a known state space and set
of controls. We also assume access to a robot or simulator,
such that we can sample from the state sequences induced
by a sequence of controls. Lastly, we assume access to a
supervisor who can, given a state, provide a control signal
label. We additionally assume the supervisor can be noisy
and imperfect, noting that the robot cannot surpass the level
of performance of the supervisor.
Policies and State Densities. Following conventions from
control theory, we denote by X the set consisting of observ-
able states for a robot task, consisting, for example, of high-
dimensional vectors corresponding to images from a camera,
or robot joint angles and object poses in the environment.
We furthermore consider a set U of allowable control inputs
for the robot, which can be discrete or continuous. We model
dynamics as Markovian, such that the probability of state
xt+1 ∈ X can be determined from the previous state xt ∈ X
and control input ut ∈ U :

p(xt+1|ut,xt, . . . ,u0,x0) = p(xt+1|ut,xt)

We assume a probability density over initial states p(x0).
A trajectory τ̂ is a finite series of T + 1 pairs of states

visited and corresponding control inputs at these states, τ̂ =
(x0,u0,,xT ,uT), where xt ∈ X and ut ∈ U for t ∈
{0, . . . , T} and some T ∈ N. For a given trajectory τ̂ as
above, we denote by τ the corresponding trajectory in state
space, τ = (x0,,xT).

A policy is a function π : X → U from states to control
inputs. We consider a space of policies πθ : X → U
parameterized by some θ ∈ Rd. Any such policy πθ in
an environment with probabilistic initial state density and
Markovian dynamics induces a density on trajectories. Let
p(xt|θ) denote the value of the density of states visited at
time t if the robot follows the policy πθ from time 0 to time
t− 1. Following [29], we can compute the average density
on states for any timepoint by p(x|θ) = 1

T

∑T
t=1 p(xt|θ).

While we do not assume knowledge of the distributions
corresponding to: p(xt+1|xt,ut), p(x0), p(xt|θ) or p(x|θ),
we assume that we have a stochastic real robot or a simulator
such that for any state xt and control ut, we can sample the
xt+1 from the density p(xt+1|πθ(xt),xt). Therefore, when
’rolling out’ trajectories under a policy πθ, we utilize the robot
or a simulator to sample the resulting stochastic trajectories
rather than estimating p(x|θ) itself.

Objective. The objective of policy learning is to find a
policy that minimizes some known cost function C(τ̂) =∑T
t=1 c(xt,ut) of a trajectory τ̂ . The cost c : X × U → R

is typically user defined and task specific. For example, in
the task of inserting a peg into a hole, a function on distance
between the peg’s current and desired final state is used [21].

In our problem, we do not have access to the cost function
itself. Instead, we only have access to a supervisor that can
achieve a desired level of performance on the task. The
supervisor provides the robot an initial set an initial set of N
stochastic demonstration trajectories {τ̃1, ..., τ̃N}. which are
the result of the supervisor applying this policy. This induces
a training data set D of all state-control input pairs from the
demonstrated trajectories.

We define a ‘surrogate’ loss function as in [29], l :
U × U → R, which provides a distance measure between
any pair of control values. In the continuous case, we
consider l(u0,u1) = ||u0 − u1||22, while in the discrete case
l(u0,u1) = 1 if u0 6= u1 and l(u0,u1) = 0 otherwise.

Given a candidate policy πθ, we then use the surrogate loss
function to approximately measure how ‘close’ the policy’s
returned control input πθ(x) ∈ U at a given state x ∈ X is
to the supervisor’s policy’s control output π̃(x) ∈ U . The
goal is to produce a policy that minimizes the surrogate loss
relative to the supervisor’s policy.

Following [29], our objective is to find a policy πθ
minimizing the expected surrogate loss, where the expectation
is taken over the distribution of states induced by the policy
across any time point in the horizon:

min
θ
Ep(x|θ)[l(πθ(x), π̃(x))] (1)

If the robot could learn the policy perfectly, this state
density would match the one encountered in user examples.
But if the robot makes an error, that error changes the
distribution of states that the robot will visit, which can lead
to states that are far away from any examples and difficult
to generalize to [27]. This motivates iterative algorithms like
DAgger, which iterate between learning a policy and the
supervisor providing feedback. The feedback is in the form
of control signals on states sampled from the robot’s new
distribution of states.

IV. RISKY AND SAFE STATES

Providing correct control inputs for (or “labeling”) all states
encountered at each iteration can impose a large burden on
the supervisor. Instead of asking the supervisor for labels at
all visited states, SHIV uses a measure of risk to actively
decide whether a label is necessary.

In contrast to the standard measure risk based purely on
variance, we define a state as ”risky” for 2 reasons: 1) it lies in
an area with a low density of previously trained states, which
can cause the current policy to mis-predict the supervisor
and incur high surrogate loss [33], or 2) the surrogate loss,
or training error, of the current policy at the state is high, so
that the state is unlikely to model the supervisor’s control
inputs correctly. States that are not classified as ”risky” are
deemed ”safe” .Our definition of risk can be visualized in
Fig. 2(d).

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

risky!
v	

safe!

v	 v	 risky! v	

safe!

(a) Confidence (b) Query by Committee (c) Novelty (d) Combined Risk

Fig. 2: A comparison of different query selection strategies for active learning on a non-stationary distribution. The shaded and empty circles are training
data from two classes, 1 and 0 respectively. The red empty circles are samples from a new distribution (produced by executing the learned policy), and
belong to class 0. Typical strategies classify states close the decision boundary as risky(a), or for which a set of estimators disagree (b). Neither of these
apply to our new samples in red. In contrast, we use a strategy that is amenable to non-stationary distributions by classifying novel states as safe (i.e not
risky) (c) and states in historically mislabeled regions.

The amount of data needed to estimate the density, scales
exponentially in the dimension of the state space [22]. Thus,
to evaluate risk in high-dimensional state spaces, such as the
HOG features in our driving simulator, Fig. 1(a), we use a
modified version of the technique known as the One Class
SVM that estimates a regularized boundary of a user defined
quantile on the training data in X [31].

We consider the problem of estimating the quantile level-
sets of a distribution P on a set X by means of a finite set of
independent and identically distributed samples x1, ...,xn ∈
X . In most general terms, the quantile function for P and
subject to a class of measurable subsets G of X is defined
by

U(γ) = inf{λ(G) : P (G) ≥ γ,G ∈ G} 0 < γ ≤ 1 (2)

λ : G → R above denotes a volume measure. Suppose
furthermore that G : [0, 1]→ G assigns a set G(γ) ∈ G that
attains the infinum measure (i.e. volume) for each γ ∈ [0, 1]
(this set is in general not necessarily unique). G(γ) denotes
a set of minimum measure G ∈ G with P (G(γ)) ≥ γ.

To handle distributions defined on high-dimensional spaces
X , work by Scholköpf et al. represents the class G via a
kernel k as the set of half-spaces in the support vector (SV)
feature space [31]. By minimizing a support vector regularizer
controlling the smoothness of the estimated level set function
this work derives an approximation of the quantile function
described in Eq. 2.

Let Φ : X → F denote the feature map corresponding
to our exponential kernel, k(x0,x1) = e−||x0−x1||2/2σ2

,
mapping the observation space X into a Hilbert space (F , 〈, 〉)
such that k(x,x′) = 〈Φ(x),Φ(x′)〉.

The One Class SVM proposed by [31] determines a
hyperplane in feature space F maximally separating the input
data from the origin:

minimize
w∈F,ξ∈R,ρ∈R

1

2
||w||2 +

1

vn

n∑
i

ξi − ρ (3)

s.t 〈w,Φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0.

Here, the parameter ν controls the penalty or ‘slack term’
and is equivalent to γ [36] in the quantile definition, Eq. 2,
as the number of samples increases. The decision function,
determining point membership in the approximate quantile
levelset is given by g(x) = sgn(〈w,Φ(x)〉 − ρ). Here, for
x ∈ X , g(x) = 0 if x lies on the quantile levelset, g(x) = 1

if x is strictly in the interior of the quantile super-levelset
and g(x) = −1 if x lies strictly in the quantile sub-levelset.

The dual form of the optimization yields a Quadratic
Program that has worst case computational complexity of
O(n3). However, Schölkopf et al. developed an improved
optimization method that has empirically been shown to scale
quadratically [31],which we use. In the dual, the decision
function is given by g(x) = sgn(

∑N
i=1 αik(xi,x)−ρ) where

αi corresponds to the dual variables. The novelty detection
method can be visualized in Fig. 2(c). However, even when
sufficient data is available, the associated control inputs may
be inconsistent or noisy and a resulting policy optimizing Eq.
6 may still incur a large surrogate loss. To account for this,
we propose a modification to the One Class SVM:

yi =

{
1 : l(πθ(xi),ui) ≤ ε
−1 : l(πθ(xi),ui) > ε

(4)

Where, in the case when l denotes discrete 0− 1 loss, we
set ε = 0, while in the continuous L2 loss case, ε is a user
defined threshold specifying allowable surrogate loss. We
use yi to modify the One Class SVM decision function as
follows:

We divide up our data in to two sets those correctly
classified: Ds = {{xi,ui} ∈ Dk, yi = 1} and those states
incorrectly classified: Dr = {{xi,ui} ∈ Dk, yi = −1} A
separate One-Class SVM is then trained on each set of states,
(Ds and Dr) and providing measures of the level sets, gs and
gr. Specified by parameters (ν, σ) and (νr, σr), respectively.

We then define the overall decision function as:

gσ(x) =

{
0 : gs(x) == 1 and gr(x) == −1
−1 : otherwise (5)

points are deemed risky if gσ(x) 6= 0. Practically, this
modification corresponds to ‘carving out holes’ in the
estimated quantile super-levelset such that neighborhoods
around states with yi = −1 are excluded from the super-
levelset. An illustration of this can be seen in Fig. 2(d).

The decision function parametrization consists of the kernel
bandwidth σ in gs. We treat σ as a ”risk sensitivity” parameter
(and study its implications in Section VI). For two reasons:
1)The expected number of examples, after a policy roll out,
the supervisor can be asked is T ∗

∫
x
1(gσ(x) == 0)p(x|θ)dx.

Thus, smaller σ corresponds to asking for more examples. 2)
A relation exists between how smooth the supervisor’s policy,

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

π̃ and how many examples are needed to learn it. Thus, a
large σ can be dangerous for policies with sharp variation
because it will treat points as safe that are really risky.

V. SHIV:SVM-BASED REDUCTION IN HUMAN
INTERVENTION

Both SHIV and DAgger [29] solve the minimization in Eq.
1 by iterating two steps: 1) compute a θ using the training data
D thus far, and 2) execute the policy induced by the current
θ, and ask for labels for the encountered states. However,
instead of querying the supervisor for every new state, SHIV
actively decides whether the state is risky enough to warrant
a query.
A. Step 1

The first step of any iteration k is to compute a θk
that minimizes surrogate loss on the current dataset Dk =
{(xi, ui)|i ∈ {1, . . . ,M}} of demonstrated state-control pairs
(initially just the set D of initial trajectory demonstrations):

θk = arg min
θ

M∑
i=1

l(πθ(xi),ui). (6)

This sub-problem is a supervised learning problem, solvable
by estimators like a support vector machine or a neural net.
Performance can vary though with the selection of a the
estimator [32]

B. Step 2

The second step SHIV and DAgger rolls out their policies,
πθk , to sample states that are likely under p(x|θk).

What happens next, however, differs between SHIV and
DAgger. For every state visited, DAgger requests the su-
pervisor to provide the appropriate control/label. Formally,
for a given sampled trajectory τ̂ = (x0,u0, ...,xT ,uT), the
supervisor provides labels ũt, where ũt ∼ π̃(xt) + ε, where
ε is a small zero mean noise term, for t ∈ {0, . . . , T}. The
states and labeled controls are then aggregated into the next
data set of demonstrations Dk+1:

Dk+1 = Dk ∪ {(xt, ũt)‖t ∈ {0, . . . , T}}

SHIV only asks for supervision on states for which are
risky, or gσ(x) 6= 0:

Dk+1 = Dk ∪ {(xt, ũt)‖t ∈ {0, . . . , T}, g(xt) = −1}

Steps 1 and 2 are repeated for K iterations or until the robot
has achieved sufficient performance on the task1.

VI. EXPERIMENTS

All experiments were run on a machine with OS X with
a 2.7 GHz Intel core i7 processor and 16 GB 1600 MHz
memory in Python 2.7. The policies, πθ are trained using
Scikit-Learn [26]. Our modified One Class SVM contains two
different ν parameters, ν and νr. We set ν = 0.1 and νr =
10−3 for all experiments. We tuned σ and σr by performing

1In the original DAgger the policy rolled out was stochastically mixed with
the supervisor, thus with probability β it would either take the supervisor’s
action or the robots. The use of this stochastically mix policy was for
theoretical analysis. In practice, it is recommended to set β = 0 to avoid
biasing the sampling [12], [29]

a grid search over different values on the surrogate loss for
a single trial of SHIV for 3 iterations.

We compare SHIV and DAgger in three domains: a
driving simulator, push-grasping in clutter with a 4DOF arm,
and surgical needle insertion using demonstrations from Dr.
Douglas Boyd, a surgeon and professor at UC Davis. Each
domain test different aspects of our algorithm: the driving
simulator has a high dimensional visual state space, grasping
in clutter has a human demonstrator provide the labels and is
a challenging manipulation problem, surgical needle insertion
uses data from a real robot.

We then compare our query selection method with those
typically used in active learning. We show that for a non-
stationary state distribution like ours, the notion of risk based
on novelty and misclassified regions performs better than
confidence, query-by-committee based methods, Maximum
Mean Discrepancy, and the One Class SVM without the
carving out misclassified holes modification. We continue with
a sensitivity analysis, which suggests that the performance
of SHIV is robust to the choice of how risky the robot is
allowed to be (the σ parameter from Eq. 5).

A. Comparing SHIV with DAgger
We compare SHIV with DAgger on three domains: the

driving simulator from above, push-grasping in clutter, and
needle insertion. We hypothesize that SHIV achieves the same
performance as DAgger, but by asking for fewer examples
and thus reducing supervisor burden.

For each algorithm and budget of states labeled, we measure
the normalized performance (e.g. 1 corresponds to matching
the supervisor’s performance on a task). Performance is a
domain specific term, such as number of times the car crashes
in the driving simulator.

1) Driving Simulator: Our first domain is a common
benchmark in Reinforcement Learning: learning a policy for
a car to drive around a track [4], [28], [29]. We implemented
a driving simulator where the car must follow a polygonal
track. We generate a polygonal track by repeatedly sampling
from a Gaussian with mean that is the center of the video
game workspace centered in the middle of the workspace,
and computing the convex hull of the sampled points. Then a
convex hull is computed on the sampled points. This produces
tracks composed of five to seven edges, an example is shown
in Fig. 1(a). If the car accidentally leaves the track, it is
placed back on the center of the track at a nearby position.
The car’s steering is U = {−15◦, 0, 15◦}. A control input
instantly changes the angle at a unit speed. The internal state
space of the car is given by the xy-coordinates and the angle
it is facing. In our experiments, the supervisor is provided by
an algorithm that uses state space search through the driving
simulator to plan the next control. The supervisor is only
allowed to search a finite amount a time ahead in the game
and is prone to error, thus on averages crashes 5.9 times per
lap.

The supervisor drives around the track twice. We collect
raw images of the simulation from a 2D bird’s eye view
and use Gaussian Pyramids to down-sample the images to
125×125 RGB pixels and then extract Histogram of Oriented
Gradients (HOG) features using OpenCV. This results in a
27926 dimensional state space description. For both DAgger

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

N
o
rm

al
iz

ed
 P

ef
o
rm

an
ce

States Labeled

DAgger
SHIV
Supervisor

Fig. 3: We compare normalized performance (i.e. matching the performance
of the supervisor) for the Driving Simulator , performance is defined as the
number of times the car left the track versus the number of queries made to
the supervisor. We plot the performance of DAgger and SHIV, the teal and
orange lines. We also plot the performance of our supervisor, who makes
non-optimal decisions and has an average performance of 5.9 crashes. Initial
results, which are run for 6 iterations each and are averaged over 40 levels,
shown in Fig. 3 suggest an 71% reduction in the number of queries needed
for SHIV compared to DAgger. Error bars in grey measure the standard
error on the mean

and SHIV, we use a Linear Support Vector Machine (SVM)
to parameterize allowable policies πθ, with γ = 0.01 as a
regularization term on the slack variables, which was set
via cross validation on the initial training examples. We set
SHIV’s parameters of the exponential kernel’s bandwidth as
σ = 200 and σr = 200, which are set via the grid search
defined above.

In Fig. 3, we visualize the performance of DAgger and
SHIV. We run 6 iterations, which is a completion of both
Step 1 and Step 2 described in Section V of each algorithm
over 40 different randomized polygonal tracks. Figure 3
presents averaged results from these experiments, suggesting
a 71% reduction in the number of queries needed for SHIV
compared to DAgger, in order to reach approximately the
same performance as our non-optimal supervisor.

2) Grasping In Clutter in Box2D: We investigate having
a human demonstrator control a simulated robot arm in 2D
to reach a target object with out knocking other objects off a
table. Grasping an object in a cluttered environment is a com-
mon task for a robot in an unstructured environment and has
been considered a benchmark for robotic manipulation [19],
[18]. The task is difficult because modeling the physics of
pushing an object is non-trivial and requires knowing the
shape, mass distribution and friction coefficient of all objects
on the table. We are interested in learning such a policy via
human demonstrations.

We used Box2D a physics simulator to model a virtual
world. We simulate a 4 DOF robot arm with three main joints
and a parallel jaw gripper as displayed in Fig. 1(b). SHIV and
DAgger do not have access to the underlying dynamics of the
simulator and must learn a policy from only demonstrations.

For input the human demonstrator provides controls
through an XBox game controller. The right joystick was
used to provide horizontal and vertical velocity inputs for
the center of the end-effector which were then translated
into robot arm motions by means of a Jacobian transpose
controller for the 3 main joint angles. The left ‘bumper’ button
on the joystick was used to provide a binary control signal to
close the parallel jaw gripper. The control inputs are hence
modeled by the set U = {[−1, 1], [−1, 1], {0, 1}}.

A state x ∈ X consisted of the 3 dimensional pose of
the six objects on the table (translation and rotation), the

N
o
rm

al
iz

ed
 P

ef
o
rm

an
ce

States Labeled

DAgger
SHIV
Supervisor

Fig. 4: We compare normalize performance (i.e. mathcing the performance
of the supervisor) for the Grasping in Clutter domain, performance is defined
as the sum of the number of objects knocked off the table plus 10 times the
binary value indicating if the object is grasped or not. Initial results, which
are averaged over 8 different trials suggest a 64% reduction in the number
of queries needed for SHIV compared to DAgger,

3 joint angles of the arm and a scalar value in the range
[0, 1] that measured the position of the gripper, 1 being fully
closed and 0 being opened. For our representation of πθ, we
used kernelized ridge regression with the radial basis function
as the kernel with the default Sci-Kit learn parameters. We
defined performance as the sum of the number of objects
knocked off the table plus 10 times the binary value indicating
if the object is grasped or not. The order of magnitude
difference in cost for grasping the object is to place emphasize
on that portion of the task. The bandwidth parameters for
SHIV were set to σr = 5 and σ = 6. For the ε term in the our
risk method, we used the median in regression error which
was the L2 distance between the predicted control and the
true supervisor’s control.

In our experiment, a human demonstrator provided one
demonstration and then iterated until the performance was
zero during the policy roll out. At each iteration, we sampled
the pose of the target object from an isotropic Gaussian with
a standard deviation that is 3% of the width of the table.

In Fig. 4 , we show the normalized performance averaged
over 8 rounds for SHIV and DAgger. Supporting our hypoth-
esis, our results suggests that SHIV can achieve the same
performance with a 64% reduction in examples needed.

3) Surgical Needle Insertion: Suture tying in surgery,
on a Robotic Surgical Assistant, is a manually intensive
task that can occur frequently through out a surgery. One
important step in suture tying is properly placing a needle in
an initial configuration for insertion. Misplacement of this the
needle can lead to suture failure and potentially rupture the
surrounding tissue [23]. In this experiment, we are interested
in learning to correct bad initial poses to the proper pose as
shown in Fig. 2. Dr. Douglas Boyd, a surgeon and professor
at UC Davis, provided us with a collection of demonstrations
on a Intuitive Surgical Da Vinci Research Kit [14].

Dr. Boyd demonstrated a set of trajectories that each started
at an initial attempted needle insertion pose P0 and applied
the necessary corrections to achieve a goal pose PG. The
time horizon, T of each trajectory was on average 80. We
used three of these demonstrations as our initial dataset D0,
thus |D0| = 240. In order to study convergence of both
SHIV and DAgger, we chose to create a synthetic expert
for online learning part. The expert controller computed the
transformation between the desired insertion pose and the
current pose by calculating the inverse of a transformation
matrix, C = P0P

−1
G . Then converted C to the associated

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

N
o
rm

al
iz

ed
 P

ef
o
rm

an
ce

States Labeled

DAgger
SHIV
Supervisor

Fig. 5: We compare normalized performance (i.e. matching the performance
of the supervisor), performance is defined as the euclidean distance between
translation in centimeters. In Fig. 3, we plot the performance of DAgger and
SHIV. Initial results, which are run for 20 iterations each and are averaged
over 40 different initial starting positions, shown in Fig. 3 suggest an 67%
reduction in the number of queries needed for SHIV compared to DAgger.
Error bars in grey measure the standard error on the mean

lie algebra vector c ∈ R6 for SE(3) and normalize it to the
average magnitude of the control, ||c̄D||, Dr. Boyd applied.

The policy πθ was represented as kernel ridge regression
with the default values given in Sci-Kit learn. The state X
was a 16 dimensional vector consisting of the elements in
the pose P vector. The control space U was a R6 vector
representing the Lie algebra.

For the ε term in the our risk method, we used the median
in regression error which was the L2 distance between the
predicted control and the true supervisor’s control. regions
respectively. The bandwidth, σ, in the rbf kernel was set to
2 and σb = 1.

For trials we sample a start position from a Gaussian on
the translational component of P0 with isotropic variance of
0.1 cm. The distance between initial P0 and PG is roughly 3
cm. Performance is measured in terms of Euclidean distance
in translational component, which is in centimeters. We run
DAgger and SHIV both for 20 iterations and average over
40 different starting positions.

In Fig. 4 , we show the normalized performance (i.e. 1
corresponds to matching the supervisor) averaged over 40
rounds for SHIV and DAgger. Supporting our hypothesis, our
results suggests that SHIV can achieve the same performance
with a 67% reduction in the number of examples needed.

B. SHIV Analysis

1) Comparison to active learning approaches.: We com-
pare five active learning methods on high dimensional non-
stationary state distributions. We first compare our combined
notion of risk (Fig. 2(d)), with risk based on novelty alone
(Fig. 2(c)) in order to test whether carving out regions that
have been misclassified previously is valuable.

We then compare against another novelty detection method
as well called Maximal Mean Discrepancy (MMD) from
MMD-IL [17], which evaluates how close a point is to
the distribution using kernel density estimate and adds the
variance of the distribution in the dataset D. MMD has been
shown to work well in low dimensional online LfD tasks. We
set bandwidth of the kernel as the same as our modified One
Class SVM and the α decision boundary is set by sorting
the MMD value of the states and picking an α such that the
lowest 10% are marked as risky. This is in similar spirit to
ν = 0.1.

Risk Sensitivity (σ)
Normalized Perform. States Labeled

1 1.0 4122
50 1.0 3864

150 1.0 9 1859
200 0.96 1524
250 0.94 1536
350 0.45 521

TABLE I: An analysis of the sensitivity risk sensitivity parameter,σ, of Eq. 5,
or the decision function for risky or safe. SHIV was run for 6 iterations and
averaged over 40 different randomized polygonal tracks. Small σ, σ = 1,
corresponds to always asking for help and very large sigma, σ = 350,
relates to a lot less data being used, but decreased performance.

We also compare against two baselines typically used in
active learning. The first is confidence based on distance
from the classification hyperplane [34] (Fig. 2(a)). We set the
threshold distance to the average distance from the hyperplane
for the mis-classified points in D0, which consisted of two
demonstrations from our solver.

The last baseline is Query By Committee (Fig. 2(d)), which
has a committee of different hypothesis estimators and points
are marked risky if the committee disagrees. Our committee
which was trained via bagging [6]. To obtain a committee,
we divided the training data into 3 overlapping subsets, each
with 80% of the data. We trained a Linear SVM on each
subset. If the three classifiers agreed with each other the
point was determined low risk and if they disagree it was
determined high risk.

We run each query selection method over 50 different car
tracks in the driving simulator domain. We measured the
percentage of truly risky states, encountered during the first
policy roll out, that are estimated to be safe by the active
learning technique. The active learning techniques are trained
on the initial demonstrations D0, which is different then the
distribution being sampled from, p(x|θ0), in this experiment.

Fig. 6 plots the performance for each query selection
method, averaged over 50 tracks. We observe a significant
performance improvement with methods based on classifica-
tion based novelty detection compared to confidence,query
by committee and MMD. Furthermore, using the combined
measure of risk performs better than relying solely on the
One Class SVM.

2) Sensitivity Analysis to Risk Sensitivity Parameter: To
analyze the sensitivity of our method we varied the risk
sensitivity parameter or σ of the decision function gσ , or Eq.
5. σ is a measure of how much risk we allow, with smaller
σs leading to more risk-adverse behavior. SHIV was ran
for 6 iterations and averaged over 40 different randomized
polygonal tracks. For each σ, we measure the final normalized
performance of the policy πθ after 6 iterations and the number
of examples SHIV requested from the supervisor. As shown in
Table I, small σ, σ = 1, corresponds to always asking for help
(many states labeled) and very large sigma, σ = 350, relates
to less data being used, but worse performance. However,
σ values between 150 and 250 all achieve similarly good
performance, suggesting that SHIV is robust to the choice of
a particular σ.

VII. DISCUSSIONS AND FUTURE WORK

Online LfD has been successful on an array of tasks [12],
[29], however it can place significant burden on a supervisor.
Our algorithm, SHIV, implements stream-based active learn-
ing with a query selection method that evaluates risk in a

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

Confidence Q. by C. One Class

%
Er

ro
r

SHIVMMD

Fig. 6: A comparison of different active learning approaches in terms of
the percentage of risky states that are estimated to be safe by the active
learning technique during the first policy roll out. We compare against a
confidence estimate of distance to hyperplane, Maximal Mean Discrepancy,
query by committee for 3 hypothesis classifiers, the One Class SVM, and
our modified One Class SVM, marked as SHIV. Results are averaged over
50 tracks and the policy πθ is represented as a Linear SVM. Error bars
measure the standard error on the mean.

manner tailored to non-stationary and high-dimensional state
distributions. We empirically evaluated our method on three
different domains: a driving simulator, grasping in clutter
and surgical needle insertion. Results suggests up to a 70%
reduction in the number of queries to the supervisor.

SHIV has several limitations. For instance, the selection of
the value of σ can affect performance and a poor choice
could result in the algorithm becoming offline imitation
learning, as shown in Table I. Future work will look at better
understanding the relationship of σ to the function πθ and
how to automatically select it.

Furthermore, to update the decision function gσ requires
solving a quadratic program, which has an upper bound
computationally complexity of O(n3) in the number of data
points. Fortunately, Scholköpf et al. provides an efficient
optimization that empirically scales quadratically [31], which
we use. Future work will also look at using techniques such
as random features or PCA to allow for even better scaling
[32].

Further analysis, video and code can be found at http:
//berkeleyautomation.github.io/shiv.

REFERENCES

[1] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” NIPS, vol. 19,
p. 1, 2007.

[2] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun, “Apprenticeship learning
for motion planning with application to parking lot navigation,” in
IROS 2008. IEEE/RS. IEEE.

[3] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning. ACM, 2004, p. 1.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[5] L. E. Atlas, D. A. Cohn, and R. E. Ladner, “Training connectionist
networks with queries and selective sampling,” in NIPS, 1990, pp.
566–573.

[6] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2,
pp. 123–140, 1996.

[7] R. Burbidge, J. J. Rowland, and R. D. King, “Active learning
for regression based on query by committee,” in Intelligent Data
Engineering and Automated Learning-IDEAL 2007. Springer, 2007,
pp. 209–218.

[8] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Research,
vol. 34, no. 1, p. 1, 2009.

[9] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,” Machine learning, vol. 15, no. 2, pp. 201–221, 1994.

[10] F. Duvallet, T. Kollar, and A. Stentz, “Imitation learning for natural
language direction following through unknown environments,” in ICRA,
2013 IEEE. IEEE, 2013, pp. 1047–1053.

[11] D. H. Grollman and O. C. Jenkins, “Dogged learning for robots,” in
ICRA, 2007 IEEE. IEEE.

[12] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for
real-time atari game play using offline monte-carlo tree search planning,”
in NIPS, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K. Weinberger, Eds. Curran Associates, Inc., 2014, pp. 3338–3346.

[13] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.

[14] Intuitive Surgical, “Annual report 2014,” 2014.
[15] K. Judah, A. Fern, and T. Dietterich, “Active imitation learning via

state queries,” in Proceedings of the ICML Workshop on Combining
Learning Strategies to Reduce Label Cost, 2011.

[16] K. Judah, A. Fern, and T. G. ietterich, “Active imitation learning via
reduction to iid active learning,” arXiv preprint arXiv:1210.4876, 2012.

[17] B. Kim and J. Pineau, “Maximum mean discrepancy imitation learning.”
Citeseer.

[18] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonprehen-
sile whole arm rearrangement planning on physics manifolds.”

[19] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel, “Physics-based trajectory
optimization for grasping in cluttered environments.”

[20] E. M. Knox and R. T. Ng, “Algorithms for mining distancebased
outliers in large datasets.” Citeseer.

[21] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” 2015.

[22] H. Liu, J. D. Lafferty, and L. A. Wasserman, “Sparse nonparametric
density estimation in high dimensions using the rodeo,” in International
Conference on Artificial Intelligence and Statistics, 2007, pp. 283–290.

[23] T. Liu and M. C. Cavusoglu, “Optimal needle grasp selection for
automatic execution of suturing tasks in robotic minimally invasive
surgery,” in ICRA, 2015. IEEE, 2015, pp. 2894–2900.

[24] W. Liu, G. Hua, and J. R. Smith, “Unsupervised one-class learning
for automatic outlier removal,” in CVPR, 2014 IEEE. IEEE, 2014,
pp. 3826–3833.

[25] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.”

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[27] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” DTIC Document, Tech. Rep., 1989.

[28] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in International Conference on Artificial Intelligence and Statistics,
2010, pp. 661–668.

[29] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” 2010.

[30] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav control
in cluttered natural environments,” in ICRA, 2013 IEEE. IEEE.

[31] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[32] B. Schölkopf and A. J. Smola, Learning with kernels: Support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[33] S. T. Tokdar and R. E. Kass, “Importance sampling: a review,” Wiley
Interdisciplinary Reviews: Computational Statistics, vol. 2, no. 1, pp.
54–60, 2010.

[34] S. Tong and D. Koller, “Support vector machine active learning with
applications to text classification,” The Journal of Machine Learning
Research, vol. 2, pp. 45–66, 2002.

[35] J. Van Den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X.-Y. Fu,
K. Goldberg, and P. Abbeel, “Superhuman performance of surgical tasks
by robots using iterative learning from human-guided demonstrations,”
in ICRA, 2010 IEEE. IEEE, 2010, pp. 2074–2081.

[36] R. Vert and J.-P. Vert, “Consistency and convergence rates of one-
class svms and related algorithms,” The Journal of Machine Learning
Research, vol. 7, pp. 817–854, 2006.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2016 IEEE International Conference on
Robotics and Automation. Received September 15, 2015.

