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Abstract— The growth of robot-assisted minimally invasive
surgery has led to sizeable datasets of fixed-camera video and
kinematic recordings of surgical subtasks. Temporal segmen-
tation of these trajectories into meaningful contiguous sections
is an important first step to facilitate human training and the
automation of subtasks. Manual, or supervised, segmentation
can be prone to error and impractical for large datasets. We
present Transition State Clustering with Deep Learning (TSC-
DL), a new unsupervised algorithm that leverages video and
kinematic data for task-level segmentation, and finds regions
of the visual feature space that mark transition events using
features constructed from layers of pre-trained image classifica-
tion Convolutional Neural Networks (CNNs). We report results
on five datasets comparing architectures (AlexNet and VGG),
choice of convolutional layer, dimensionality reduction tech-
niques, visual encoding, and the use of Scale Invariant Feature
Transforms (SIFT). TSC-DL matches manual annotations with
up-to 0.806 Normalized Mutual Information (NMI). We also
found that using both kinematics and visual data results in
increases of up-to 0.215 NMI compared to using kinematics
alone. We also present cases where TSC-DL discovers human
annotator errors. Supplementary material, data and code is
available at: http://berkeleyautomation.github.io/tsc-dl/

I. INTRODUCTION

Kinematic and fixed-camera video demonstrations from
robot-assisted minimally invasive procedures can be used
for surgical skill assessment [6], development of finite state
machines [12, 25], learning from demonstration (LfD) [30],
and calibration [23]. Surgical tasks are often multi-step pro-
cedures that have complex interactions with the environment,
and as a result, demonstrations are noisy and may contain
superfluous or repeated actions [15]. Temporal segmentation
of the demonstrations into meaningful contiguous sections
facilitates local learning from demonstrations and salvaging
good local segments from inconsistent demonstrations.

Manual annotation provides one approach to segmentation
(e.g., [7]); however, as datasets grow, this can become
impractical. Human annotators can also be prone to error by
missing segments or applying segmentation criteria incon-
sistently across a dataset. There are a number of recent pro-
posals to algorithmically extract segments [3, 27, 15]. Such
algorithms fall into two broad categories: (1) dictionary-
based, (2) and unsupervised. Dictionary-based algorithms
require a pre-defined vocabulary of primitives and decom-
pose new trajectories in terms of the primitives. However,
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Fig. 1: We apply TSC-DL to a suturing task. Each “throw" of
suturing repeats between four steps, and figure illustrates that TSC-
DL extracts a segmentation that closely aligns with the manual
annotation without supervision.

specific primitives may not cover all of the actions seen in a
set of demonstrations, while broad primitives may overlook
important transitions.

Unsupervised techniques avoid dependence on a pre-
defined set of primitives using generative mixture models
for the data, e.g., locally Gaussian segments, and fit trajec-
tories to these models by clustering together locally similar
points [3, 15, 17] . A clustering model allows us to detect
outliers and inconsistencies (segmentation points that lie in
small clusters) without annotations susceptible to human
error. It can also give us a natural notion of confidence,
through the goodness-of-fit, which can guide the acquisition
of demonstrations of segments that require more data. While
unsupervised segmentation has been widely studied in the
context of kinematic data, increasingly, fixed-camera video
is also available.

Visual features can provide information about the state
of manipulated objects [15, 27], and trajectory information
when there is state-dependent sensor noise in kinematic data
[23]. Existing work uses hand-tuned features [15], poses for
all objects in the workspace via AR markers [27], or motion
capture markers [18]. We explore relaxing these constraints
by applying recent results in Deep Learning to learn a visual
representation that generalizes across tasks.

In this paper, we significantly extend our prior segmen-
tation work, Transition State Clustering [15], with automat-
ically constructed visual features using deep convolutional
neural networks (CNNs). Computer vision frameworks such
as CAFFE [10] can leverage recent advances in CNNs [16,
10, 22] through pre-trained models (on large corpora of
natural images). CNNs learn expressive but general feature
representations that transfer across domains allowing us to
take advantage of the models without having to acquire
a large number of examples. Transition State Clustering
segments demonstrations by learning switched linear dy-
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namical systems and using clustering to identify regions
of the state-space associated with switching events. TSC
applies a Dirichlet Process Gaussian mixture hierarchically
first clustering transition states spatially and then temporally.
Our prior results suggested that augmenting the state-space
with hand-tuned visual features could significantly improve
accuracy. In the present paper, we extract visual features
using filters derived from layers of pre-trained CNNs applied
to frames of video recordings and call this new algorithm
Transition State Clustering with Deep Learning (TSC-DL).
This constructs a high-dimensional trajectory that augments
the kinematic state-space (Figure 2).

We study CNN features for unsupervised temporal tra-
jectory segmentation on five datasets: (1) a synthetic 4
segment example, (2) JIGSAWS surgical needle passing, (3)
JIGSAWS surgical suturing, (4) toy plane assembly by the
PR2, and (5) Lego assembly by the PR2. On the synthetic
example, we find that TSC-DL recovers the 4 underlying
segments in the presence of partial state observation (one
kinematic state hidden), control noise, and sensor noise.
TSC-DL is an unsupervised algorithm that consistently ap-
plies segmentation criteria derived from linear dynamical
regimes. We compare this criteria with manual annotations
when available. On real datasets, we find that TSC-DL
matches the manual annotation with up to 0.806 normalized
mutual information. Our results also suggest that including
kinematics and vision results in increases of up-to 0.215
NMI over kinematics alone. We demonstrate the benefits
of using an unsupervised approach by presenting examples
where TSC-DL discovers unlabeled segments due to human
annotator error (as shown in Figure 5), and can learn across
demonstrations with widely varying operator skill levels (as
shown in Table II).

II. RELATED WORK
A. Learning From Demonstrations

One model for learning from demonstrations uses segmen-
tation to discretize action spaces (skill-learning) which al-
lows for efficient learning of complex tasks [9, 28]. This line
of work largely focuses on pre-defined primitives. Niekum
et al. [26] proposed an unsupervised extension to the motion
primitive model by learning a set of primitives using the
Beta-Process Autoregressive Hidden Markov Model (BP-
AR-HMM). The work by Niekum et al. does incorporate vi-
sual information, however, it does not use visual information
to actually find segments. Post segmentation, Niekum et al.
uses AR markers to estimate poses of all of the objects in the
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workspace. The segments, discovered with kinematics alone,
are then specified in each objects reference frame. When
the objects are then moved, the trajectory can be transferred
using a Dynamic Motion Primitive model.

Calinon et al. [2, 4] characterizes segments from demon-
strations as skills that can be used to parametrize imitation
learning. In this line work, the authors apply Gaussian
Mixture Models (GMMs) to cluster observations from the
same mixture component. A number of other works have
leveraged this model for segmentation e.g., [13, 14, 33].
As we will later describe, Gaussian Mixture Models have a
duality with switched linear dynamical systems [24]. Calinon
et al. [4] uses segmentation to teach a robot how to hit
a moving ball. They use visual features through a visual
trajectory tracking of a ball. The visual sensing model in
Calinon et al. is tailored to the ball task, and in this paper,
we use a set of general visual features for all tasks.

B. Surgical Robotics

Other surgical robotics works have largely studied the
problem of supervised segmentation using either segmented
examples or a pre-defined dictionary of motions (similar to
motion primitives) [36, 35, 19, 42, 29].

C. Visual Gesture Recognition

A number of recent works, attempt to segment human
motions from videos [8, 34, 40, 11, 38, 37]. Tang et al.
and Hoai et al. proposed supervised models for human action
segmentation from video. Building on the supervised models,
there are a few unsuperivsed models for segmentation of
human actions: Jones et al.[11], Yang et al. [40], Di Wu et
al. [38] , and Chenxia Wu et al. [37]. Jones et al. [11] restricts
their segmentation to learning from two views of the dataset
(i.e., two demonstrations). Yang et al. [40] and Wu et al. [37]
use k-means to learn a dictionary of primitive motions, how-
ever, in prior work, we found that transition state clustering
outperforms a standard k-means segmentation approach. In
fact, the model that we propose is complementary to these
works and would be a robust drop-in-replacement for the
k-means dictionary learning step [15]. The approach taken
by Di Wu et al. is to parametrize human actions using a
skeleton model, and they learn the parameters to this skeleton
model using a deep neural network. In this work, we explore
using generic deep visual features for robotic segmentation
without requiring task-specific optimization such as skeleton
or action models using in human action recognition.
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D. Deep Features in Robotics

Robotics is increasingly using deep features for visual
sensing. For example, Lenz et al. uses pre-trained neural
networks for object detection in grasping [20] and Levine
et al. [21] fine-tune pre-trained CNNs for policy learning.
For this reason, we decide to explore methodologies for
using deep features in segmentation as well. We believe that
segmentation is an important first step in a number of robot
learning applications, and the appropriate choice of visual
features is key to accurate segmentation. We present an initial
exploration of different visual featurization strategies and
segmentation accuracy.

III. PRIOR WORK: TRANSITION STATE CLUSTERING

The Transition State Clustering algorithm (TSC), learns
clusters of states that mark dynamical regime transitions.

A. Learning Transition States

Let D = {dj,...,d;} be the set of demonstrations where
each d; is a trajectory of fully observed robot states and each
state is a vector in R?. TSC-DL finds a set of transition states
clusters, which are states across demonstrations associated
with the same transition event, reached by a fraction of
at least p € [0,1] of the demonstrations. We assume that
demonstrations are recorded in a global fixed coordinate
frame and visually from a fixed point of view and they are
consistent with at least one transition state cluster.

Transitions are defined in terms of switched linear dy-
namical systems (SLDS). We model each demonstration as
a SLDS:

X(t+1)=Ax(t)+W({) : A; €{A1,..., Ak}

In this model, transitions between regimes {Aj,...,A;} are
instantaneous where each time ¢ is associated with exactly
one dynamical system matrix 1,...,k. Transition state is
defined as the last state before a dynamical regime transition
in each demonstration. A Transition state is the state x(¢) at
time ¢, such that A(r) ZA(r+1).

Suppose there was only one regime, then we obtain a
linear regression problem:

argnllL‘in l1AX; — X1

where X; and X;;; are matrices with 7 — 1 columns of
x(1),x(2),....x(T — 1)], and [x(2),x(3),....x(T)] respec-
tively. Moldovan et al. [24] proves that fitting a Jointly
Gaussian model to n(t) = (x(;(jl)) is equivalent to Bayesian
Linear Regression. We use Dirichlet Process Gaussian Mix-
ture Models (DP-GMM) to learn the regimes without have to
set the number of regimes in advance. Each cluster learned
signifies a different regime, and co-linear states are in the
same cluster. To find transition states, we move along a
trajectory from r = 1,...,¢¢, and find states at which n(r)
is in a different cluster than n(z + 1). These points mark a
transition between clusters (i.e., transition regimes).

B. Learning Transition State Clusters

A transition state cluster is defined as a clustering of the

set of transition states across all demonstrations; partitioning
these transition states into m non-overlapping similar groups:
C={C,C,...,C,y} We model the states at transition states
as drawn from a GMM model: x(r) ~ N(u;,X;). Then, we can
apply the DP-GMM again to cluster the state vectors at the
transition states. Each cluster defines an ellipsoidal region of
the state-space space.
Each of these clusters will have constituent vectors where
each n(t) belongs to a demonstration d;. Clusters whose
constituent vectors come from fewer than a fraction p
demonstrations are pruned.

Given a consistent set of demonstrations, the algorithm finds
a sequence of transition state clusters reached by at least a
fraction p of the demonstrations.

IV. TRANSITION STATE CLUSTERING WITH DEEP
LEARNING

We extend our prior work with states defined with visual
features, and present the TSC-DL algorithm in Algorithm 1.

A. Visual Features

We define an augmented state space x(t) = (IZ‘E;;) where

k(t) € R* are the kinematic features and z(t) € RY are
the visual features. We use layers from a pre-trained Con-
volutional Neural Network (CNNs) to derive the features
frame-by-frame. CNNs are increasingly popular for image
classification and as a result a number of image classification
CNNSs exist that are trained on millions of natural images.
Intuitively, CNNs calssify based on aggregations (pools) of
hierarchical convolutions of the pixels. Removing the ag-
gregations and the classifiers, results in convolutional filters
which can be used to derive generic features.

We found that use of these features requires a number
of pre-processing and post-processing steps; in addition
to a number of design choices within the CNN such as
which convolutional layer(s) to use for composing the visual
featurization.

1) Pre-processing: CNNs are trained on static images
for image classification, and as a result their features are
optimized for identifying salient edges and colors. However,
they do not capture temporal features and do differentiate the
between robot and workspace features. Furthermore, since
we aggregate across demonstrations, we need to ensure that
these features are largely consistent. To reduce variance due
to extraneous objects and lighting changes, we crop each
video to capture the only the relevant workspace where
robot manipulation occurs. Then, the videos are rescaled to
640x480 along with down-sampling to 10 frames per second
for computational efficiency. All frames in the videos are
normalied to a zero mean in all channels (RGB) individ-
ually [16, 32]. All of pre-processing were preformed with
open source ffmpeqg library.
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Algorithm 1: TSC-DL: Transition State Clustering with
Deep Learning

Data: Set of demonstrations:D
Parameters: pruning factor (p), time window (w), PCA dim
(dp)7 hyperparams (o , 0,03, 0y)
Result: Set of Predicted Transitions 7;, Vd; € D
foreach d; € D do
zi < VisualFeatures (d;,w,dp)
k; + KinematicFeatures (d;,w)

xi(r) « (3i1) vre{1,.... T}

5() < [x@+ DT, x@)T, x(t—=1)T]", vt
N [N =T, %))
// Cluster to get Change Points
7 CCP:DPGMM(N,O(Q) // o is hyperparameter
8 foreach N(n) € C-¥, N(n+1) ECJCPJ;AJ‘ do
9 | CP« CPU{N(n)}
// Cluster over Kinematic Feature Subspace
10 Cl :DPGMM(CP,(Xl) // Ci: set of clusters
1 foreach C, €C; do
2 | CP(C)« {CP(n) € CuWne {1,...,|CP|}}
// Cluster over Visual Feature Subspace

13 Ck2 — DPGNH\/I(CP(C]{)7 (Xz)

BOW N -

S W

14 foreach Cy € Cyy do

15 if 3, 1( S oinuyea HCP() € Ce) = 1) < p|D)|
then

16 L Ck2 — Ck2 \ {Ckk’} // Cluster Pruning
// collect intra-cluster transitions V d;

17 V di € D do T; +— T; U{CP(n) € Cyr,¥Yn: N(n) € d;}

// Cluster over time to predict Transition Windows

18 foreach d; € D do
19 Repeat steps 1-17 for D' =D\ d;

20 TjFTjUY}(I>, {VjidjE’D’}

21 foreach d; € D do 7; + DPGMM (T;, 04)
22 return 7;, Vd; € D

// ij: ith iteration

2) Visual Featurization: Once the images were pre-
processed, we applied the convolutional filters from the pre-
trained neural networks. Yosinski et al. note that CNNs
trained on natural images exhibit roughly the same Gabor
filters and color blobs on the first layer [41]. They established
that earlier layers in the hierarchy give more general features
while later layers give more specific ones. In our experi-
ments, we explore the level of generality of features required
for segmentation. In particular, we explore two architectures
designed for image classification task on natural images: (a)
AlexNet: Krizhevsky et al. proposed multilayer (5 in all)
a CNN architecture [16], and (b) VGG: Simoyan et al.
proposed an alternative architecture termed VGG (acronym
for Visual Geometry Group) which increased the number
of convolutional layers significantly (16 in all) [32]. We
also compare these features to other visual featurization
techniques such as SIFT and SUREF for the purpose of task
segmentation using TSC-DL.

3) Post-Processing: Encoding: After constructing these
features, the next step is encoding the results of the convo-
lutional filter into a vector z(z). We explore three encoding
techniques: (1) Raw values, (2) Vector of Locally Aggregated
Descriptors (VLAD) [1], and (3) Latent Concept Descriptors

(LCD) [39].

4) Post-Processing: Dimensionality Reduction: After en-
coding, we feed the CNN features z(z), often in more than
50K dimensions, through a dimensionality reduction process
to boost computational efficiency. This also balances the
visual feature space with a relatively small dimension of
kinematic features (< 50). Moreover, GMM-based clustering
algorithms usually converge to a local minima and very high
dimensional feature spaces can lead to numerical instability
or inconsistent behavior. We explore multiple dimension-
ality reduction techniques to find desirable properties of
the dimensionality reduction that may improve segmentation
performance. In particular, we analyze Gaussian Random
Projections (GRP), Principal Component Analysis (PCA)
and Canonical Correlation Analysis (CCA) in Table I. GRP
serves as a baseline, while PCA is used based on widely
application in computer vision [39]. We also explore CCA
as it finds a projection that maximizes the visual features
correlation with the kinematics.

B. Robust Temporal Clustering

To reduce over-fitting and build a confidence interval as
a measure of accuracy over the temporal localization of
transitions, we use a Jackknife estimate. It is calculated
by aggregating the estimates of each N — 1 estimate in
the sample of size N. We iteratively hold out one out of
the N demonstrations and apply TSC-DL to the remaining
demonstrations. Then, over N — 1 runs of TSC-DL, N — 1
predictions are made Vd; € D. We temporally cluster the tran-
sitions across N — 1 predictions, to estimate final transition
time mean and variance Vd; € D. This step is illustrated in
step 20-21 of Algorithm 1.

C. Sliding Window States

To better capture hysteresis and transitions that are not
instantaneous, in this current paper, we use rolling window
states where each state x(,) is a concatenation of 7" historical
states. We varied the length of temporal history 7' and evalu-
ated performance of the TSC-DL algorithm for the suturing
task using metric defined in Section V-A. We empirically
found a sliding window of size 3, i.e., X;) = (1;(:)))’ as the
state representation led to improved segmentation accuracy
while balancing computational effort.

D. Skill-Weighted Pruning

Demonstrators may have varying skill levels leading to
increased outliers, and so we extend our outlier pruning to
include weights. Let, w; be the weight for each demonstration
d; € D, such that w; € [0,1] and W; = ZWIWI Then a cluster
Ciw is pruned if it does not contain change points CP(n)
from at least p fraction of demonstrations. This converts to:

Zwil( > 1(CP(n) € C) > 1) <p
d;

n:N(n)€Ed;
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Control Noise _ Kin. Sensor Noise

| GRP | PCA [ CcA

SIFT - 0.4431+0.008 | -

AlexNet conv3 0.559+0.018 | 0.600-£0.012 | 0.494-:0.006
AlexNet conv4 0.568£0.007 | 0.607-£0.004 | 0.4880.005
AlexNet pool5 0.565+0.008 | 0.599+£0.005 | 0.486-:0.012
VGG conv5_3 0.571£0.005 | 0.637-0.009 | 0.494+0.013
VGG LCD-VLAD | 0.50640.001 | 0.534+0.011 | 0.523-0.010
AlexNet LCD-VLAD | 0.51740.001 | 0.469+0.027 | 0.534:£0.018

TABLE I: The silhouette score for each of the techniques and
dimensionality reduction schemes on a subset of suturing demon-
strations (5 expert examples). We found that PCA (100 dims)
applied to VGG conv5_3 maximizes silhouette score

V. EXPERIMENTS

A. Evaluation Metrics

It is important to note that TSC-DL is an unsupervised
algorithm that does not use labeling. Therefore, we evaluate
TSC-DL both intrinsically (without labels) and extrinsically
(against human annotations).

Intrinsic metric: The goal of the intrinsic metric is compare
the performance of different featurization techniques, encod-
ings, and dimensionality reduction within TSC-DL without
reference to external labels. This score is not meant to be
an absolute metric of performance but rather a relative mea-
sure. The intrinsic metric we use measures the “tightness”
of the transition state clusters. This metric is meaningful
since we require that each transition state cluster contains
transitions from a fraction of at least p of the demonstrations,
the tightness of the clusters measures how well TSC-DL
discovers regions of the state space where transitions are
grouped together. This is measured with the mean Silhouette
Score (denoted by SS), which is defined as follows for each
transition state i:
b(i) —a(i)

max{a(),b(i)}’
if transition state i is in cluster Cj, a(i) is defined the
average dissimilarity of point i to all points in C;, and b(i)
the dissimilarity with the closest cluster measured as the
minimum mean dissimilarity of point i to cluster Cy, k # j.
We use Lp-norm as the dissimilarity metric and rescale sS
€ [0,1] for ease of comparison.

ss(i) = ss(i) € [-1,1]

Extrinsic metric: To calculate an absolute measure of
similarity of TSC-DL predictions 7 with respect to man-
ual annotations £, we use Normalized Mutual Information
(NMI) which measures the alignment between two label

PCA Sensitivity

Window Sensitivity

500 1000 ] 5 10
Num. Dimensions Window Size

Fig. 3: We evaluate the sensitivity of two hyperparameters set in
advance: number of PCA dimensions and sliding window size. The
selected value is shown in red double circles.
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Fig. 4: (A) The figure shows a 2D synthetic example with a moving
point in blue and target in yellow. The robot moves to the target
in a straight line in discrete steps, and a new target appears. (B)
Segmentation results for repeated demonstrations with variance in
target position. (C) Segmentation under control noise, sensor noise,
and partial observeration.

assignments. NMI is equal to the KL-divergence of the joint
distribution with the product distribution of the marginals; in-
tuitively, the distance from pairwise statistical independence.
NMI score lies in [0, 1], where O indicates independence
while 1 is perfect matching. It is defined as,

1T, L)
H(T)H(L)’

B. Evaluation of Visual Featurization

NMI(T,L) = NMI(T, L) € [0,1]

In our first experiment, we explore different visual featur-
ization, encoding, and dimensionality reduction techniques.
We applied TSC-DL to our suturing experimental dataset,
and measured the silhouette score of the resulting transition
state clusters. Table I describes the featurization techniques
on the vertical axis and dimensionality reduction techniques
on the horizontal axis. Our results suggest that on this dataset
features extracted from the pre-trained CNNs resulted in
tighter transition state clusters compared to SIFT features
with a 3% lower SS than the worst CNN result. Next, we
found that features extracted with the VGG architecture
resulted in the highest Ss with a 3% higher ss than the best
AlexNet result. We also found that PCA for dimensionality
reduction gave the best SS performance 7% higher than
the best GRP result and 10% higher than best CCA result.
Because CCA finds projections of high correlation between
the kinematics and video, we believe that CCA discard
features informative features resulting in reduced clustering
performance. We note that neither of the encoding schemes,
VLAD or LCD significantly improve the SsS.

There are two hyper-parameters for TSC-DL which we set
empirically: sliding window size (T = 3), and the number of
PCA dimensions (k = 100). In Figure 3, we show a sensitivity
plot with the SS as a function of the parameter. We calculated
the Ss using the same subset of the suturing dataset as above
and with the VGG conv5_3 CNN. We found that T = 3 gave
the best performance. We also found that PCA with k =
1000 dimensions was only marginally better than k = 100
yet required >30 mins to run. For computational reasons,
we selected k = 100.
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Fig. 5: The first row shows a manual segmentation of the sutur-
ing task in 4 steps: (1) Needle Positioning, (2) Needle Pushing,
(3) Pulling Needle, (4) Hand-off. TSC-DL extracts many of the
important transitions without labels and also discovers un-labled
transition events.

C. End-to-End Evaluation

For all subsequent experiments on real data, we use a pre-
trained VGG CNN conv5_3 and encoded with PCA with 100
dimensions.

1. Synthetic Example: We first evaluate TSC-DL on a
synthetic example consisting of 4 linear segments (Figure
Figure 4). A point robot on a plane moves towards a target
in a straight line, once it reaches the target, the target moves
to a new location. This process is repeated four times. We use
the simulation to generate image data and kinematics data.
Figure 4 (b) shows the results of unsupervised segmentation
using only kinematics data ( ) When the state is full
observed (i.e., we have both x ancf y positions), we accurately
recover 4 segments with kinematics alone. If we hide one of
the states, we see that we can still recover the 4 segments.
In this example, when there is no noise on the kinematics,
one dimension alone is enough to learn the segmentation.

Next in Figure 4, we make this scenario more complex
by introducing control noise: x(r + 1) = x(z) + u(t) + v,
where v ~ N(0,d;) where dj = 0.25 We find that when
there is control noise, partial observed kinematics can lead
to erroneous segments even in this synthetic example. We
use this example to demonstrate the importance of visual
features. If we add visual features (using SIFT since these
are not natural images), we find that we can mitigate the
problems caused by noise and partial observability. Finally,
we repeat the above experiment for kinematic sensor noise
in the system £(z) = x(¢t) + v, where v ~ N(0,d;) where
dr = dp =0.25. We note that only the kinematics is corrupted
with noise, while the vision sees a straight trajectory.

2. Suturing: We apply our method to a subset of JIGSAWS
dataset[6] consisting of surgical task demonstrations under
tele-operation using the da Vinci surgical system. The dataset
was captured from eight surgeons with different levels of
skill, performing five repetitions each of suturing and needle

\ K \ Z \ K+Z

Silhouette Score — Intrinsic Evaluation

E 0.630+0.014 0.576+0.018 0.65440.065
Suturing  E+I 0.550+0.014 0.548+0.015 0.71640.046

E+I+N | 0.518+0.008 0.515+0.021 0.73340.056
Needle E 0.524+0.004 0.609+0.010 0.716=£0.097
vty E+I 0.521+0.006 0.536+0.013 0.666+0.067

E+I+N | 0.51340.007 0.552+0.011 0.557+0.010
NMI Score — Extrinsic evaluation against manual labels

E 0.516 £+ 0.026 | 0.266 + 0.025 | 0.597 + 0.096
Suturing  E+I 0.427 + 0.053 | 0.166 £ 0.057 | 0.646 £ 0.039

E+I+N | 0.307 £ 0.045 | 0.157 £ 0.022 | 0.625 £ 0.034
Needle E 0.287 £ 0.043 | 0.222 + 0.029 | 0.565 + 0.037
vty E+I 0.285 + 0.051 | 0.150 + 0.048 | 0.471 £ 0.023

E+I+N | 0.272 £ 0.035 | 0.186 £ 0.034 | 0.385 £ 0.092

TABLE II: Comparison of TSC-DL performance on Suturing and
Needle Passing Tasks. We compare the prediction performance by
incrementally adding demonstrations from Experts (E), Intermedi-
ates (I), and Novices (N) respectively to the dataset.

passing. We use 39 demonstrations of a 4 throw suturing task
(Figure 5) and we manually annotate these demonstrations
for reference. We apply TSC-DL to kinematics and vision
alone respectively and then the combination. With combined
kinematics and vision, TSC-DL learns many of the important
segments identified by annotation in [6]. After learning the
segmentation, we apply it to a representative trajectory and
show that we accurately recover 10/15 transitions annotated
by our manual labeling.

Upon further investigation of the false positives, we found
that they corresponded to crucial actions missed by our la-
beling. For example, TSC-DL discovers that a crucial needle
repositioning step where many demonstrators penetrate and
push-through the needle in two different motions. TSC-DL
finds segments that correspond to linear dynamical systems,
and applies this criterion consistently. Human annotators may
miss subtle transitions such as quick two-step motions.

3. Needle Passing: Next, we applied TSC-DL to 28 demon-
strations of the needle passing task. These demonstrations
were annotated in [6]. Table II lists quantitative results for
both needle passing and suturing with both ss and NMI
agreement with the human labels. Demonstrations from the
JIGSAWS dataset were annotated with the skill-level of
the demonstrators (Expert (E), Intermediate (I), and Novice
(D). In our surgical datasets, where a mix of skill levels
were used, we applied weighted outlier pruning to account
for increased outliers amongst novice demonstrators. We
used a weight of 5 for experts, 2 for intermediates, and 1
for novices, and these weights were determined empirically
using analysis of task time in the datasets (the max novice
time was 5x slower than the expert time). We present
results with weighting on the mixed groups and without
weighting on experts only. We find that in both surgical
datasets, kinematics and vision gives improved performance
(intrinsically and extrinsically) than either set of features
alone. This emphasizes the benefits of using TSC-DL as
it takes advantage of multimodal trajectory. Also, we see
a strong dependence on the operator’s skill level. The results
are very different when applied to just experts compared to
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Fig. 6: We compare TSC-DL on 12 kinesthetic demonstrations (top)
and 8 human demonstrations (bottom). No kinematics were avail-
able for the human demonstrations. We illustrate the segmentation
for an example demonstration of each. Our manual annotation of
the task has 5 steps and TSC-DL recovers this structure separately
for both Kinesthtic demos on PR2 and Human demos with the same
visual features.

all skill levels. For kinematics and vision alone, the intrinsic
metric drops as we add less skilled demonstrations. However,
when we include kinematics and vision we see that the metric
increases fur the suturing dataset. We will investigate this in
future work, but we speculate this has to do with sampling
error, i.e., adding more data makes the segmentation more
accurate.

4. PR2: Legos and Toy Plane Assembly: In our next
experiment, we explore segmenting a multi-step assembly
task using (1) large Lego blocks and (2) toy Plane from
the YCB dataset [5]. We demonstrate that TSC-DL ap-
plies generally outside of surgical robotics. We collect 8
kinesthetic demonstrations for each task through kinesthetic
demonstrations of the task on the PR2 robot. Figure 6
illustrates the segmentation for the plane assembly task. We
find the plane assembly task using kinematics or vision alone
results in a large number of segments. The combination can
help remove spurious segments restricting our segments to
those tranistions that occur in most of the demonstrations—
agreeing in similarity both kinematically and visually.

5. Human Demonstration of Toy Plane Assembly: We
extend the toy plane assembly experiment to collect 8
demonstrations each from two human users. These examples
only have videos and no kinematic information. We note
that there was a difference between users in the grasping
location of fuselage. The results of TSC-DL performance
are summarised in Table III. An example of toy plane
assembly by both robot and human is qualitatively compared
in Figure 6. This emphasizes on the benefits of TSC-DL,
namely, that we do not tune the features to any specific
robot or task. These are general visual features that can apply
broadly even when a human is performing demonstrations.
We omit a visualization of the results for the Lego assembly,
however, we summarize the results quantitatively in Table III.

\ K \ Z K+Z
Silhouette Score — Intrinsic Evaluation
Lego (Robot) 0.653+0.003 0.644+0.026 0.662+0.053
Plane (Robot) 0.74140.011 0.649+0.007 0.77140.067
Plane (Human 1) | — 0.601 +£0.010 | -
Plane (Human 2) | — 0.628 +0.015 | —
NMI Score — Extrinsic evaluation against manual labels
Lego (Robot) 0.542 + 0.058 | 0.712 + 0.041 | 0.688 + 0.037
Plane (Robot) 0.768 £ 0.015 | 0.726 £ 0.040 | 0.747 £ 0.016
Plane (Human 1) | — 0.726 £+ 0.071 | -
Plane (Human 2) | — 0.806 + 0.034 | —

TABLE III: Plane and Lego Assembly Tasks. Both tasks show
improvements in clustering and prediction accuracy using multi-
modal data as compared to either modality. Further, only vision
(Z) is available for human demos of the plane assembly task.
Comparable segmentation results are obtained using only video
input for human demos. Higher Silhoutte Scores and NMI scores
are better, respectively.

VI. CONCLUSION

In this work, we propose TSC-DL extending the Transition
State Clustering algorithm to include visual feature extraction
from pre-trained CNNs. In our experiments, we apply TSC-
DL to five datasets: (1) a synthetic 4 segment example, (2)
JIGSAWS surgical needle passing, (3) JIGSAWS surgical
suturing, (4) toy plane assembly by the PR2, and (5) Lego
assembly by the PR2. On the synthetic example, we find
that TSC-DL recovers the 4 underlying segments in the
presence of partial state observation (one kinematic state
hidden), control noise, and sensor noise. On real datasets,
we find that TSC-DL matches the manual annotation with
up to 0.806 NMI. Our results also suggest that including
kinematics and vision results in increases of up-to 0.215
NMI over kinematics alone. We demonstrated the benefits
of an unsupervised approach with examples in which TSC-
DL discovers inconsistencies such as segments not labeled
by human annotators, and apply TSC-DL to learn across
demonstrations with widely varying operator skill levels. We
also validated surgical results in a different domain with
demonstrations of assembly tasks with the PR2 and human-
only demonstrations.

VII. FUTURE WORK

Our results suggest a number of important directions for
future work. First, we plan to apply the results from this
paper to learn transition conditions for finite state machines
for surgical subtask automation. The CNNs applied in this
work are optimized for image classification of natural images
and not the images seen in surgery. In future work, we
will explore training CNNs from scratch to identify features
directly from both pixels and kinematics, or fine-tuning exist-
ing networks. Next, our current visual featurization is applied
frame-by-frame. This approach misses transient events that
span frames. We will explore applying convolutional features
that capture temporality such as 3D convolutional layers and
optical flow [31]. We are also interested in exploring using
recurrent neural networks and variational autoencoders to
perform and end-to-end neural network implementation of
TSC-DL.
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