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Abstract— Caging grasps are valuable as they can be robust
to bounded variations in object shape and pose, do not depend
on friction, and enable transport of an object without full
immobilization. Complete caging of an object is useful but may
not be necessary in cases where forces such as gravity are
present. This paper extends caging theory by defining energy-
bounded cages with respect to an energy field such as gravity.
This paper also introduces Energy-Bounded-Cage-Analysis-2D
(EBCA-2D), a sampling-based algorithm for planar analysis
that takes as input an energy function over poses, a polygonal
object, and a configuration of rigid fixed polygonal obstacles,
e.g. a gripper, and returns a lower bound on the minimum
escape energy. In the special case when the object is completely
caged, our approach is independent of the energy and can
provably verify the cage. EBCA-2D builds on recent results in
collision detection and the computational geometric theory of
weighted a-shapes and runs in O(s? 4 sn?) time where s is the
number of samples, n is the total number of object and obstacle
vertices, and typically n << s. We implemented EBCA-2D and
evaluated it with nine parallel-jaw gripper configurations and
four nonconvex obstacle configurations across six nonconvex
polygonal objects. We found that the lower bounds returned
by EBCA-2D are consistent with intuition, and we verified the
algorithm experimentally with Box2D simulations and RRT*
motion planning experiments that were unable to find escape
paths with lower energy. EBCA-2D required an average of
3 minutes per problem on a single-core processor but has
potential to be parallelized in a cloud-based implementation.
Additional proofs, data, and code are available at: http:
//berkeleyautomation.github.io/caging/.

I. INTRODUCTION

Consider a single movable object and a configuration
of fixed obstacles that define a set of gripper jaws or
fingers. The object is caged if it cannot escape [22], [31].
Caging grasps are valuable as they can be robust to bounded
variations in object shape and pose [3], [35], [45], do not
depend on friction, and are sufficient in applications that do
not require complete immobilization such as nonprehensile
manipulation [26].

This paper extends caging theory by defining energy-
bounded cages under an energy field such as gravity based
on the minimum energy required to escape. For example, the
blue objects in Fig. 1 would have to overcome gravitational
forces to escape by moving above the fixed black obstacles.
However, computing the minimum escape energy may be
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Fig. 1: Two energy-bounded cages of industrial parts (blue) by robotic
grippers (black) under a gravitational field indicated by the center arrow.
Neither object is completely caged, but both are energy-bounded caged.

challenging for arbitrary nonconvex objects and obstacles
because there can be an uncountable number of paths that an
object can take to escape a cage. Currently, complete cages in
2D can only be verified under assumptions on the number of
gripper fingers [3], [29], [40], the geometry of obstacles [35],
or the geometry of the object [16], [41].

This paper formally defines energy-bounded cages and
introduces Energy-Bounded-Cage-Analysis-2D (EBCA-2D),
a sampling-based algorithm that can verify cages and energy-
bounded cages for general 2D polygonal objects and an
arbitrary number of fixed polygonal obstacles under an
energy field. The algorithm computes a lower-bound on the
minimum escape energy using weighted a-shapes [13], [14],
a well-studied data structure from computational geometry
that facilitates checking the connectivity of an approximation
to the configuration space and has been used for proving
path non-existence in motion planning [4], [28], [47]. We
use weighted a-shapes to discretize the object configuration
space into cells from a set of sampled object poses and a
conservative approximation of the penetration depth between
the object and obstacles. We then mark cells that lie strictly
within the collision space or above an energy threshold as
forbidden and examine the connectivity of the free cells to
prove the non-existence of object escape paths [28]. Finally,
we lower bound the minimum escape energy by performing
a binary search over energy levels, querying the connectivity
of the free cells for each threshold. When the returned lower
bound is arbitrarily large, the object is provably caged.

We evaluated EBCA-2D on a set of nine parallel-jaw
gripper configurations and four configurations of obstacles
across six polygonal objects under gravity. In each case,
neither 120 seconds of RRT* optimal path planning nor
1,000 trials of dynamic simulation in Box2D generated an
escape path with lower energy than the estimated lower
bound.



II. RELATED WORK

For surveys of the substantial literature on grasping, see
Bicchi and Kumar [5] or Prattichizzo and Trinkle [30].
Many methods for grasp analysis use either the wrench
space or configuration space. Methods based on the wrench
space measure the ability of a grasp to resist external forces
and torques applied to a grasped object [17], [21], [25].
While wrench space metrics depend on local properties of
an object, cages depends on the configuration space, which
concerns the global geometry of an object and gripper. Early
research defined a cage as a configuration of a gripper
defined by n isolated points in the plane such that a planar
object could not be moved arbitrarily far away from the
gripper [22], [33]. Rimon and Blake [31] later characterized
the space of caging configurations for a 1-parameter two-
fingered gripping system with convex fingers. Rimon and
Blake [32] also developed an algorithm to determine the
maximal set of two-finger gripper configurations that cage an
object, which was later extended to three fingers by Davidson
and Blake [11]. Other research has presented algorithms for
computing the set of caging configurations for grasps with
two or three disc fingers on convex polygons [16], non-
convex polygons [29], [40] and grasps on 3D polyhedra with
two point fingers [3]. Recently, Allen et al. [2] proposed
an algorithm for identifying all cages of polygonal shapes
by two point-fingers using a low-dimensional contact-space
formulation. In contrast, our work focuses on a sampling-
based approach for verifying a particular cage with an
arbitrary number of polygonal fingers and with an additional
energy constraint.

Several works have studied the relation of caging configu-
rations to uncertainty and to form closure grasps. Vahedi and
van der Stappen [40] developed the concepts of squeezing
and stretching cages for two-finger grippers and showed
that two-finger cages in the plane can always lead to a
form closure grasp by either opening or closing the fingers.
Rodriguez and Mason [34] extended this property to two
finger cages of compact and contractible objects in arbitrary
dimensions, and later generalized the link between caging
and grasping to more than two fingers, showing that cages
can be a useful waypoint to a form closure grasp of a
polygonal object when the gripper stays in a sub- or super-
level set of a gripper shape function [35]. Cages have also
been shown experimentally to offer robustness to shape and
pose uncertainty. Diankov et al. [12] found that caging grasps
were empirically more successful than those ranked by local
force closure metrics when manipulating articulated objects
with handles. Other work has studied the robustness of
caging grasps to object pose uncertainty [45] or uncertainty
in object shape due to vision [37].

Due to the complexity of caging in 3D, recent re-
search [36] has focused on specific object families that
exhibit holes or handles to determine cages with complex
robot hands. In 2D, Makpunyo et al. [27] introduced the
concept of partial cage quality, arguing that configurations
that allow only rare escape motions may be successful in
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Fig. 2: A complete cage and an energy-bounded cage illustrated in the
workspace (top) and translational configuration space (bottom) for a gravi-
tational potential field. (Left) An object (blue) is caged by obstacles (black)
if it cannot reach poses arbitrarily far away from its initial pose qg. In
configuration space this corresponds to a disconnection between the exterior
free space F and the object initial pose qo which is completely enclosed
by the collision space Z. (b) A gripper forms an energy-bounded cage of
an object with minimum escape energy u* if all escape paths cross the
u*-superlevel set of a potential energy function U : SE(2) — R (yellow).

practice. The authors proposed a heuristic metric based on
the length and curvature of escape paths generated by a
motion planner. Wan et al. [44] determined cages for 2D
polygons by mapping out the configurations in collision in
a voxelized representation of the configuration space and
checking connectivity. In comparison, we present a formal
definition and metric of energy-bounded cages and formally
prove that a cell discretization of the 3D configuration space
can be used to verify cages and energy-bounded cages.

Our work is also related to the problem of proving
path existence and non-existence in the field of motion
planning. When the free configuration space can be de-
scribed by semi-algebraic functions, the free space can be
analytically discretized into cells to answer path existence
queries [23]. However, such a semi-algebraic description
might be prohibitively expensive to compute, motivating
alternative methods. Basch et al. [4] provided a quadratic-
time algorithm to prove path non-existence of a polygon
through a polygonal hole in an infinte wall. Zhang et al. [47]
developed a method for approximately decomposing the
free space and obstacle space for a robot into rectangular
cells, labelling cells as being in collision using penetration
depth computation, and searching for paths through cells
in free space. We build upon the results of McCarthy et
al. [28], which used configuration samples to approximate
the collision space using a-shapes [13] and presented an
algorithm that can verify path non-existence between two
configurations.

III. DEFINITIONS
A. Problem

We consider the problem of caging a compact 2D polyg-
onal object @ C R? by a fixed configuration of compact
polygonal obstacles G C R? and an energy function U :
SE(2) = R? xS! — R that is convex when restricted to R?,
such as gravity. We consider G to be fixed in the environment
and denote the object polygon in pose q € SFE(2) relative
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Fig. 3: Illustration of the steps of the EBCA-2D algorithm (best viewed in
color). Given a polygonal object (blue), set of polygonal obstacles / fingers
(black) and an energy function U, EBCA-2D finds a lower bound on the
minimum escape energy or reports that the object is completely caged.
1) The first step is to conservatively approximate the collision space by
uniformly sampling s object poses and keeping only poses where the object
is in collision with the obstacles. For each collision pose, we compute the
penetration depth 7; which defines a ball strictly inside the collision space
Z (red). 2) The union of these balls conservatively approximates Z. We
then discretize the configuration space into cells by computing the weighted
Delaunay triangulation D from the points and use the weighted a-shape A
with oo = 0 to classify the cells belonging to Z (the white trianglular mesh).
3) Finally, we use binary search to find the maximum energy u for which no
escape path exists by classifying the set of forbidden cells V,,, classifying the
connected components of D\ V,,, and checking if the component containing
the initial object pose qo is bounded. Blue and yellow indicate connected
components, while green indicates poses such that U(q) > u.

to its initial configuration qo € SE(2) as O(q). Example
obstacles G include the end-effectors of a robotic gripper or
parts of the environment such as walls or support surfaces.

B. Complete Caging

Consider a bounded subset Z within the the configuration
space C of a object:

Definition 3.1: Let C be a subset of SFE(2), the set of

rigid transformations in the plane, and Z C C. We call a
point x € C \ Z completely caged by Z in C if x lies in a
bounded path-component of C \ Z.
This definition is illustrated in the left panel of Fig. 2. Note
that a complete cage guarantees that no continuous path in
C\ Z exists from x to a point arbitrarily far away. We can
verify complete cages using a sufficient condition:

Lemma 3.1: Let Y C Z C C. If x € C\ Z is completely
caged by ), then x is completely caged by Z.

Proof: C\ Z C C\ ), which implies that any path in
C\ Z can be restricted to C \ ). [ |
This property is illustrated in Fig. 4. Thus if we can prove
a complete cage condition for a subset ) of the true set of
interest Z, then the result holds for Z.

In this work, we are interested in the case where Z C
SE(2) is the collision space of O relative to G [23]:

Z={qe SE(?2)|int(0(q))NG +# o} .
We denote by F = SE(2) \ Z the free configuration space.

C. Energy-Bounded Caging

When the object can escape, we seek to quantify the
energy required for the object to escape. Define U~1(X) =

Fig. 4: Illustration of the subset property of cages. (a) An object in pose qo is
caged because it cannot reach poses qy arbitrarily far away without crossing
a forbidden region Z. (b) If no path from qo to qy exists without passing
through a subset ) C Z, then the object must be caged. (c¢) However, we
are not guaranteed to verify a cage using any subset y' C Z because :)/
may not block all paths from qq to qy.

{q € SE(2) | U(q) € X} for any subset X C R.
Given an energy threshold © € R, we denote by Z, =
Z U U YJu,00)) the u-energy forbidden space and by
Fu = SE(2)\ Z, the u-energy admissible space. Using
the previous definitions, we formally introduce a the notion
of an energy-bounded cage:

Definition 3.2: We call G a u-energy-bounded cage of O
with respect to U if the initial configuration qo € SE(2) of
O lies in a bounded path-connected component of F,,.

When u can be arbitrarily large, we obtain the standard
notion of complete caging of a polygonal object O relative
to G [22]. Fig. 2 illustrates both complete caging and a
u-energy-bounded cage with respect to the gravitational
potential energy U(q) = Mg(y — yo), where M is the mass
of the object and g is the acceleration due to gravity. To
measure energy-bounded cages, we introduce the notion of
the minimum escape energy:

Definition 3.3: The minimum escape energy, denoted u*,
is the infimum over w such that G is not a u-energy-bounded
cage of O when such an infimum exists, and otherwise u* =
0.

The rest of this work is dedicated to computing a lower
bound on u* for a fixed configuration.

IV. METHODOLOGY

The EBCA-2D algorithm takes as input an object O,
obstacle configuration G, and energy function U, and outputs
a lower bound on the minimum escape energy or reports that
the object is completely caged. Fig. 3 illustrates EBCA-2D.

We first generate s samples of object poses Q =
{q1,.-,qs} C SE(2) in collision and lift the samples into
R3 to form a set X. Next, we compute a conservative
estimate of the penetration depth for each lifted pose to form
a set R, and we prove that R can be used to construct
a subset of the collision space. To prove that the object
is caged up to an energy threshold u, we must show that
the initial object pose is completely enclosed by the wu-
energy forbidden space Z,,. To do so, we utilize weighted a-
shapes with parameter oo = 0 to conservatively approximate
Z, with cells constructed from X and R. We then use
connectivity checking to prove non-existence of escape paths
based on recent results of [28]. Finally, we use binary search
to determine a lower bound of w for which no path exists in
our cell decomposition.



A. Verifying Cages in SE(2)

Given a set of sampled poses in collision Q = {q1, ...,qs}
where each q; € SE(2), the first step of our algorithm is
to embed the samples in R3. Let z be the center of mass of
O and p = max |v — z||2 be the maximum moment arm of

O. Then let 7 : R® — SE(2) be the covering map defined
by 7(x,y,2) = (z,y,(z/p)mod2r), for (z,y,2) € R
We map from poses to the covering space with an inverse
map 7' : SE(2) — R® defined by m'(z,y,0) =
(z,y,p0 + 2rk) for k € Z [9]. Given v € Z, a fixed
number of rotations to embed, our lifted set of pose samples
is X = {q;r = N a) |ai € Q,k € {-v,...,0,...,v}}.

We relate path existence in the covering space to cages in
the configuration space by means of the following result [19]:

Theorem 4.1: Let Y C R® be a bounded subset, let
Conv()) denote the convex hull of ), and let Conv())
denote the closure of Conv()). Let qop € SE(2) such that
qo € 7(Conv(Y)) \ 7()) and let qo be any point such that
7(d0) = qo. If there exists no continuous path from ¢, € R?
to 9Conv()) C R3 in R?\ ), then qp € SE(2) is caged
by ©()) in SE(2).

Proof: Suppose the contrary. Since qg is not caged by
7(Y) in SE(2) and S* is compact, there exists a continuous
escaping path v(¢t) : [0,1] — SE(2) \ m(¥) such that
7(0) = qo = (z0,%0,00) and (1) = (z1,y1,01) where
(o, y0) — (z1,y1)]]2 > diam(Conv())). By the properties
of the covering map T, there exists a lifting of -y to a covering
path 4 : [0,1] — R3\ Y with 4(0) = §o and 7((t)) = y(¢)
for all ¢ € [0, 1], where ||5(0) —4(1)||2 > diam(Conv(})).
Hence by the continuity of 4(t) there exists a smallest ¢y €
[0,1] such that 4(to) € 9Conv(Y) and 4([0,]) € R3\ V.
This contradicts our supposition that no continuous path
exists from ¢q to 9Conv()). [ |
This result implies that a lifting of the w-energy forbidden
space Z, C R3 such that 77(7:u) = Z, can be used to check
the existence of energy-bounded cages.

B. Approximating the u-Energy Forbidden Space Z,,

It remains to construct a conservative approximation of the
lifted u-energy forbidden space V,, C ZAU and to computa-
tionally prove path non-existence in the lifted space, which
would prove an energy-bounded cage by Lemma 3.1 and
Theorem 4.1. We first approximate the lifted collision space
Z by a set B using a conservative estimate of penetration
depth, then discretize the convex hull of B into cells using
weighted a-shapes, and finally form V), from cells lying
strictly within Z,.

1) Approximating the Collision Space Using Penetration
Depth : The 2D generalized penetration depth (GPD) p :
SE(2) — R between an object O(q;) in pose q;, =
(z4,vi,0;) and obstacle G is defined as [48]:

pla) = min {d(ai,qj)fint (O(a;) NG = &}

where d : SE(2) x SE(2) — R is a distance metric between
poses. Following Zhang et. al [48], we use d(q;,q;) =

V(s — )2+ (yi —y;)2 + %ienzpwi — (0; 4+ 2mm)|, which
has the following important property:

Lemma 4.1: Let r; = r(q;) : SE(2) — R be an approx-
imate solution to the above equation such that r; < p(q;)
for all q; € C and let B,(x) = {y € R® : [x —y| < 7}
be a standard Euclidean ball of radius r centered at x € R®.
For any lifted pose q;, if 7(q;) € Z, then any lifted pose
q; € B,,(q;) also satisfies 7(q;) € Z.

A detailed version of the proof is given in the supplemental
file at http://berkeleyautomation.github.io/
caging/, and a similar proof is given by Zhang et al. [47].
For our set of pose samples Q C SFE(2) with an associated
lifting X C R? and associated GPD values R = {r; =
r(q;) | qi € 9,k € {—v...,0,...,v}}, define

B(X7R) = U B"'i,k(di,k)'
X, R

It follows from Lemma 4.1 that 7(B(X,R)) C Z.

In order to satisfy r; < p(q;), we use an algorithm
by Zhang et. al [48] to lower bound the GPD between
any two objects. The algorithm assumes a given convex
decomposition of the two bodies [24], then computes the
exact GPD between all possible pairs of convex pieces and
takes the maximum over the GPD values between the pieces.
In the worst case, we can decompose the polygons into O(n)
triangles, where n is the total number of vertices between O
and G. Then we can compute the exact GPD between two
convex bodies using the Gilbert-Johnson-Keerthi Expand-
ing Polytope Algorithm (GJK-EPA) developed by van den
Bergen [42] and implemented in libced [18], which takes
O(1) time for triangles [8]. There are up to O(n?) pairs
of triangles to check, and therefore the total complexity of
computing GPD is O(n?).

2) Weighted o-Shapes: Weighted a-shapes [13], [14],
[15], illustrated in Fig. 5, are a well-studied tool from
computational geometry that facilitate computational checks
of complete cages and energy-bounded cages by discretizing
the configuration space into cells. We use weighted a--shapes
with a = 0 to determine which cells belong strictly to the
lifted collision space Z.

Weighted a-shapes are a type of simplicial complex [14],
a key data-structure to represent a large collection of geomet-
rically interesting spaces that generalize the notion of a graph
and a triangulation. Let X = {x1,...,xs} C R3 be a point
set and R = {rq,...,rs} be positive scalars for each element
of X such that any subset of 4 points of X are affinely
independent. This is a weak condition since for uniformly
sampled points this occurs with probability one [15]. The
weighted Delaunay triangulation (WDT) of X and R is
DX, R) = {0 = {x0,...,%xx} | N, Vi, (X, R) #
fand 0 < k < 3}, where Vi, (X, R) = {y | [|xi —¥|? —
r? < lxj —ylI* = r3,Vj € {1,..., P}} is the weighted
Voronoi region for x;. The union of all simplices in D(X, R)
is Conv(X) and when r; = 0 for all ¢ this reduces to the
standard Delaunay triangulation of X'. The weighted a-shape
A= A(X,R) at @ = 0 is a particular simplicial subcomplex
of D(X,R) with several important properties:
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Fig. 5: Weighted a-shape construction and representation. (Top-left) The a-
shape A with o = 0 is constructed from a set of Euclidean balls centered
at points X with radii R = {r1,..,7s} (Bottom-left) A contains edges
and triangles between the pairs and triplets of with a common intersection,
respectively (bottom). (Top-right) As we increase the ball radius towards co
the set of balls becomes the power diagram of the point set, a generalization
of the Voronoi diagram. (Bottom-right) The triangulation of the power
diagram is the weighted Delaunay triangulation D(X,R) of the points,
which contains the convex hull.

Theorem 4.2 (Edelsbrunner et. al): Let B(X,R) =

Ui;_, B,,(x;). Then any k-simplex o = {x;,,...,X;,} in
A such that i, € {1,..,s} and 0 < k& < 3 is completely
contained in the union of balls Uf oBr,, (x4 )
This implies that if we use the set of lifted poses X with
radii given by the penetration depths R, then the weighted
alpha shape A(X,R) C Z and can be used to verify cages
by Lemma 3.1 and Theorem 4.1.

3) Approximating the Potential Energy Superlevel Set: It
remains to find a subcomplex of D(X, R) such that 7(x) €
U~*([u,00)) for any x in the subcomplex.

Lemma 4.2: For any k-simplex ¢ € D(X,R), let
Ulo) = r)r{lg(ly U(m(x)). Furthermore, let P,(X,R) =
{oc € D(X,R) | U(c) > u}. Then P,(X,R) is a subcom-
plex of D(X,R) and P, (X, R) C U~ ([u,0)).

Proof: Fix a simplex oj, € P, (X, R). Any face o; of
o is also a member of P, (X, R) by the minimum over the
energy function. Furthermore, by the convexity of U when
restriced to R?, any point y in Conv (o) satisfies U(7(y)) >
U(ox) > u, and therefore y € U~1([u, ). [ |
A result of this Lemma and Theorem 4.2 is that the u-energy
forbidden subcomplex V), satisfies

Vu(X,R) = A(X,R) UP,(X,R) C Z,.

C. Verifying Path Non-Existence

We can now verify u-energy-bounded cages by showing
that no path exists from the lifting of the object pose g
to OD(X,R) in D(X,R)\ V,,(X,R) by Theorem 4.1. We
use Algorithm 1, a modified version of the algorithm by
McCarthy et al. [28], to verify that no escape paths exist.
As shown by McCarthy et al. [28], the worst-case runtime
to verify path non-existence is O(s?) but is often O(s) in
practice, where s is the number of sampled points. The
runtime is dominated by the construction of the weighted De-
launay triangulation D(X, R). Given D(X,R), Algorithm 1

takes O(s) time in the worst case because each simplex
in D(X,R) must be classified to construct a disjoint set
structure.

Theorem 4.3: 1f V), is any subcomplex of D(X,R) in R3
such that o € Conv(X)\V, and Algorithm 1 returns True,
then there exists no continuous path from qg to 9 Conv(X)
in D(X,R)\ Vu.

The proof is a slight modification of the main Theorem
of [28] and is given in the supplemental file. Therefore,
if Algorithm 1 returns True when run with V,, as defined
in Section IV-B.3, then we are guaranteed that V,, forms a
u-energy bounded cage of qp. If Algorithm 1 returns False
then we cannot determine whether or not V, forms a u-
energy bounded cage of qp.

1 Input: Lifted initial pose qo, weighted Delaunay triangulation

D(X,R), u-Energy Forbidden Subcomplex V,,

Result: True if we verify that V,, cages O in pose 7(qo),

False if undecided

// Init free subcomplex and boundary
2 U ={0;|0i € D(X,R)\ Vu,|o:| =3, };
3 W={o;|0; € D(X,R) \ Vu,|o;| =2}
// Compute connected components
O =DisjointSetStructure(td U W);
for o; € UUW do

for o; €Neighbors(o;, D(X,R) \ V) do
if 0,Noj ¢V, then
‘ Q.UnionSets(a;, 05);

end
10 end
// Check connectivity
11 o9 = Locate(qo, D(X, R));
12 for o; € W do
if Q.SameSet(op,o;) then
| return False;

15 end
16 return True;

Algorithm 1: Verifying u-Energy-Bounded Cages

D. Lower-Bounding the Minimum Escape Energy

We determine a lower bound to u* by searching over
values of u that form an energy-bounded cage. EBCA-2D,
our full algorithm for computing the a lower bound, is given
in Algorithm 2. EBCA-2D generates s samples of poses
in collision Q with penetration depths R over the collision
space using rejection sampling, embeds the poses in R? using
to form a set X, constructs a weighted Delaunay triangulation
D(X,R) and alpha shape A(X,R) from the samples, and
finds and approximation @ to u* using binary search, where
on each iteration we check for an energy-bounded cage using
Algorithm 1. The complexity of EBCA-2D is O(s? + sn?),
where the O(s?) term is due to constructing D(X,R) and
the O(sn?) term is due to the computation of the GPD for
s pose samples.

Theorem 4.4: Let u* denote the minimum escape energy
for object O and obstacle configuration G. Let 4 be the result
of running Algorithm 2 with O and G. Then 4 < u*.

Proof: By Lemma 3.1 and the subset properties of
A(X,R) from Lemma 4.1 and Theorem 4.2 we are guaran-
teed that if our algorithm terminates when checking u = oo,



then the object is completely caged. It remains to show
that for all iterations of the binary search, the gripper
configuration G is a wug-energy-bounded cage. This is true
for iteration 0, as the initial value satisfies uy < U(qp).

Furthermore, if the lower bound is updated to uy = uy,
then G is a un,-energy-bounded cage of O by Theorem 4.3,
Lemma 4.1, and Lemma 4.2. |

1 Input: Polygonal obstacles G, Polygonal object O, Number
of pose samples s, Number of rotations v for SE(2) lifting,
Binary search resolution A
Result: 4, a lower bound on the minimum escape energy u*
// Sample poses in collision

2 Q=02,R=02,{=diam(G) + diam(0O);
3 W =[—(0] x [-£,0] x[0,2m);

4 for i € {1,...,s} do

5 q; = RejectionSample(WV);

6 r; = LowerBoundPenDepth(q;, O, G);
7 if r; > 0 then

8 | @=QU{ai}, R=RU{ri};

9 end

0 X ={m"(q)|a€Qke{-v . v}
// Create alpha shape
1 D(X,R) = WeightedDelaunayTriangulation(X', R);
12 A(X,R) = WeightedAlphaShape(D (X, R), a = 0);
// Binary search for min escape energy
13 if EnergyBoundedCage(qo, D(X,R), A(X,R)) then
14 | return oo;
15 ug = min U(o%) such that o, € D(X,R);
16 u,, = max U(oy) such that o, € D(X,R);
17 while |u, —u¢| > A do
18 Um = 0.5(we + uy);
19 Vu,, = ForbiddenSubcomplex(D(X,R), A(X,R), um);
20 if EnergyBoundedCage(qo, D(X,R), Vu,,) then

21 | e = tm;
22 else

23 |t = Ums
24 end

25 return ug;

Algorithm 2: Energy-Bounded-Cage-Analysis-2D

V. EXPERIMENTS

To test our methods, we implemented EBCA-2D in C++
and evaluated the performance on a set of polygonal objects
under a gravitational potential energy field. We used the
CGAL library [10] to compute triangulations and «-shapes.
For GPD computation we performed a convex decomposition
of polygons using the algorithm of Lien et al. [24] and
libced [18] for the GJIK-EPA algorithm. All experiments ran
on an Intel Core i7-4770K 350 GHz processor with 6 cores.

A. Energy-Bounded Cages Under Gravity

We ran EBCA-2D with s = 200,000 pose samples for
varying obstacle configurations on a set of six polygonal
parts. The parts were created by projecting 3D models from
the YCB dataset [7] and 3DNet [46] onto a plane and
triangulating the projection. We computed the mass M for
each object using a uniform mass density of 0.01kg/cm?.
Each run of EBCA-2D took approximately 180 seconds, and
more details on runtime can be found in Section V-B.

Fig. 6 shows the estimated normalized minimum escape
energy U, = 4/(Mg), or distance that the center of mass

Configuration 2

v it

Configuration 1 Configuration 3

A

Qo

iy, = 2.96 G, =171 @, = 0.00
B ) (] ) (] g
4, = 1042 1, = 5.10 iy, = 0.50
i ’ I
C ' :
= al n
4, =3.07  dn =095 Gy, = 0.00

Fig. 6: Three example polygonal parts (blue) with three parallel-jaw config-
urations (black) for each object. Below each configuration is normalized
minimum escape energy @, = u/Mg estimated by EBCA-2D with
s = 200, 000 pose samples under gravity, where M is the mass of the part.
To visualize the output of EBCA-2D, we render the object translucently at
the the highest point of an escape path found by an RRT* planner, with
an arrow to indicate direction. We see that w.,,, which is the estimated
minimum height that must be reached to escape, ranks the configurations
for each object in the same order as the maximum height reached along the
RRT* escape path.

must rise to escape, for three parallel-jaw gripper configu-
rations on each of three objects. To aid in visualization, we
used RRT* implemented in OMPL [38] to plan an escape
path to directly below the initial object pose, and we rendered
the object in the pose along the solution path with maximum
energy. The ranking of grasps by 4, matches our intuition,
and appears to also match the ranking of grasps by the
maximum energy reached along the RRT* visualization path.
To evaluate the lower bound of Theorem 4.4, we used RRT*
to attempt to plan an object escape path over the set of
collision-free poses with energy less than u. We also ran
dynamic simulations of object motions under gravity and
Gaussian force and torque perturbations in Box2D [1] and
checked if the object ever escaped with energy less than
4. For every configuration, the RRT* planner was not able
to find an escape path with energy less than 4 within 120
seconds and in Box2D the object never violated @ over 1,000
trials.

We also ran our algorithm on a set of configurations with
more than two nonconvex obstacles. Fig. 7 displays ,, for
four examples: capturing an object using a single rectangular
jaw and ramp, bowl-shaped jaws pinning an object against
a vertical wall, three rectangular jaws, and a robotic gripper
on a doorknob inspired by [12]. Our algorithm is able to
prove cages for configurations 3 and 4, and the ranking of
configurations 1 and 2 by 4, matches our intution. Again,
both RRT* and Box2D did not generate an escape path with
energy less than .



Configuration 1 Configuration 2 Configuration 3 Configuration 4
|
: |
o Il g
U, = 6.11 Uy = 8.79 Up = 00 Uy, = 00

Fig. 7: Four example configurations of polygonal parts (blue) and obstacle
configurations (black) with varying shape and number of components. Under
each configuration is the normalized minimum escape energy U, estimated
by EBCA-2D with s = 200,000. We see that EBCA-2D verifies that
configurations 3 and 4 are cages, both of which are challenging due to
the nonconvexity of the parts and obstacles.
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Fig. 8: (Left) The ratio of the minimum escape energy « estimated
by EBCA-2D for s pose samples to 4 at s = 400,000 for s =
{6.25,12.5, 25, 50, 100, 200, 400} x 103. The values plotted are for con-
figuration 1 of each object in Fig. 6 and are averaged over 5 independent
trials per value of s. We see that the object B, the “fattest” object,
converges the fastest and object C, the object with the “thinnest” pieces,
converges the slowest. (Right) The runtime of EBCA-2D in seconds broken
down by component of the algorithm versus the number of pose samples
s = {6.25,12.5, 25,50, 100, 200, 400} x 102. Each datapoint is averaged
over 5 independent trials per value of s and configuration 1 of the objects
in Fig. 6. The scaling of the average runtime is approximately linear in s,
and the runtime becomes dominated by the time to generate pose samples
for large s.

B. Sensitivity to Number of Pose Samples

We also studied the sensitivity of @ and the total runtime
to the number of pose samples s used to approximate the
collision space. The left panel of Fig. 8 shows the ratio of
@ at s = {6.25,12.5,25,50,100, 200,400} x 103 to @ at
s = 400,000 for configuration 1 for each of the objects
in Fig. 6. Each ratio is averaged over 5 independent trials
per value of s to smooth the effects of random initializations.
We see that for less than about 25,000 samples the output
tends to be 4 = 0 because the collision space is not
well-approximated, leading to “holes” in the algorithm’s
representation of the collision space for lower y-coordinates.
However, as s becomes large, 4 converges towards a nonzero
value. Interestingly, object B, which is the “fattest” [43]
converges the fastest, taking only about 50,000 samples to
converge to within 90% of its value at s = 400,000. On
the other hand, object C takes nearly 200,000 to converge
to within 90% of its value at s = 400, 000. This is possibly
because u* for object C depends on a very thin part of the
collision space, which requires more samples to approximate.

The right panel of Fig. 8 shows the scaling of the runtime
in seconds versus the number of pose samples s averaged
over 5 independent trials for configuration 1 of the objects
in Fig. 6. The runtime is broken down by component of the
algorithm: pose sampling, approximating the configuration

space using a-shapes, and the binary search over energies.
We see that the total runtime for these shapes and obstacles
is approximately linear in the number of pose samples s,
with pose sampling taking the largest portion of the runtime.
However, the amount of time to sample poses and the time to
construct an approximation to the configuration space both
appear to be slightly superlinear in s. These results suggest
that runtime remains well below the worst case s? scaling in
practice.

VI. DISCUSSION AND FUTURE WORK

We defined energy-bounded caging configurations and
the minimum escape energy, or the minimum energy that
external perturbations must exert on an object for it to escape
a set of obstacles. We also developed Energy-Bounded-Cage-
Analysis-2D (EBCA-2D), an algorithm to compute a lower
bound on the minimum escape energy for 2D polygonal
objects and obstacles using weighted a-shapes. Our exper-
iments demonstrate that we are able to verify cages and
suggest that the lower bound from EBCA-2D matches our
intuition on a set of nonconvex objects and obstacles.

Future work will explore tighter bounds on the escape
energy using optimal planners such as RRT*. We will also in-
vestigate extensions of EBCA-2D to synthesize obstacle con-
figurations that form energy-bounded cages and to analyze
3D objects and obstacles. One barrier to using EBCA-2D for
synthesis is the runtime for analyzing a single configuration,
which is largely dominated by pose sampling. Future work
will study parallel cloud-based implementations of sampling
and adaptive sampling procedures to bias samples towards
thin parts of the collision space such as Gaussian sampling
from motion planning [6]. Additionally, we will explore non-
zero values of a and their relation to grasp robustness.

While in principle the theory behind our approach can be
generalized to 3D, a challenge for synthesizing and analyzing
configurations in 3D is the increase in dimensionality of
the configuration space from 3D to 6D. This increases the
computational load to construct dense a-shapes [15] and may
also increase the number of samples needed to approximate
the configuration space. Another difficulty is that scaling to
3D would require an embedding of SFE(3) into R®, which
is more challenging due to the topology of SE(3) [9] and
because no implementation of higher dimensional weighted
a-shapes exists in common software such as CGAL [39]. In
future work, we will investigate alternative representations of
the forbidden space such as Vietoris-Rips complexes [20], a
sparser simplicial complex representation of point samples,
or precomputed simplicial complexes that cover the config-
uration space [44].
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