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Abstract

Collaborative Frame Selection arises when one robotic
pan, tilt, zoom camera is shared by many users. The prob-
lem is to compute optimal camera parameters based on si-
multaneous frame requests from all users. We formalize the
problem using a new metric, Intersection Over Maximum
(IOM), to model the degree of satisfaction for each user,
and seek to maximize total satisfaction forn users. We
assume the zoom parameter is chosen from a discrete set
of m levels and consider cases with discrete and continu-
ous pan and tilt paramters. For a discrete set ofw × h
pan and tilt values, we give an exact algorithm that runs
in O((n + mwh) log2 n). For continuous pan and tilt, we
give an exact algorithm that runs inO(n2m) time. We also
give a distributed version that runs inO(nm) time at each
client and inO(n log n + mn) time at the server. An imple-
mentation of the second algorithm can be found online at:
http://www.tele-actor.net/sharecam/.

KEY WORDS– Internet robot, teleoperation, webcam, col-
laborative control, videoconferencing

1 Introduction

Consider a robotic camera at a compelling location such as
the Sydney boat harbor, United Nations, Academy Awards,
or inside the International Space Station. The camera frame
is determined by pan, tilt, and zoom parameters that can be
changed to observe details of the scene. However there are
many viewers contending for control of the camera. One
commercial solution uses a user queue: viewers wait pa-
tiently for their turn to operate the camera [Canon, 2003].
Obviously, the user queue does not scale well. In this pa-
per, we eliminate the queue and allow many users to share
control of the camera simultaneously.

∗ This work was supported in part by the National
Science Foundation under IIS-0113147, by Intel Corporation,
and by UC Berkeley’s Center for Information Technology Re-
search in the Interest of Society (CITRIS). For more informa-
tion please contact dzsong@ieor.berkeley.edu, frankst@cs.uu.nl,
or goldberg@ieor.berkeley.edu.

Figure 1:User interface. Each Internet-based user sees two
image windows. The lower window is a fixed image of the
camera’s reachable range of view. A user requests a cam-
era frame by positioning a dashed rectangle in the lower
window. Based on frame requests from all users, we com-
pute an optimal camera frame (shown with solid rectangle),
move the camera accordingly, and display the resulting live
image in the upper window.

We are developing network-based applications for educa-
tion, journalism and entertainment where many users share
control of a single physical resource. “Sharecam” is an ex-
ample of Collaborative Telerobotics, where the camera is a
telerobot with 3 degrees of freedom. In the taxonomy pro-
posed by Chong et al. [Chong et al., 2000], this is a Mul-
tiple Operator Single Robot (MOSR) system. Our research
is motivated by applications where groups of users desire
simultaneous access to a single robotic resource. Inputs
from each user are combined to generate a single control
stream for the robot. There can be benefits to such collabo-
ration: teamwork is a key element in education at all levels
[Crouch and Mazur, 2001, Rogoff et al., 1996] and an en-
semble of users may be more reliable than a single (possibly
malicious) user [Goldberg and Chen, 2001].

As illustrated in Figure 1, the user interface includes two
image windows, one with a fixed image for user input and



the other that displays a live image based on all requests.
The input is a set of requested camera frames specified
as desired fixed aspect-ratio iso-oriented rectangles fromn
users. The output is a single camera frame.

We propose a new metric for user “satisfaction” based
on how a user’s requested frame compares with a candidate
camera frame. The metric is proportional to the common
area of the candidate frame and the requested frame and
inversely proportional to the ratio of the sizes of the can-
didate and the request. The latter discourages excessively
large frames, such as the enclosing rectangle of all requests.

Finding the camera frame that maximizes total satisfac-
tion is a non-linear optimization problem. We assume a
discrete set of allowable zoom levels and consider cases
with discrete and continuous pan and tilt. Letn be the
number of users,m be the number of zoom levels, andw
and h be the number of pan and tilt values respectively.
For discrete pan and tilt, we give an algorithm that runs in
O((n + mwh) log2 n) based on recent spatial data struc-
tures developed for box aggregation. For continuous pan
and tilt, we identify a finite set of critical points we call “vir-
tual corners”; we prove that a global maximum must exist at
a virtual corner. The latter algorithm runs in timeO(n2m).
Finally, we present a distributed version of this that runs in
time O(n log n + mn) on the server andO(mn) on each
client.

2 Related work

The Internet provides a low-cost and widely-available in-
terface that can make physical resources accessible to a
broad range of participants. Online robots, controllable
over the Internet, are an active research area. In addi-
tion to the challenges associated with time delay, super-
visory control, and stability, online robots must be de-
signed to be operated by non-specialists through intu-
itive user interfaces and to be accessible 24 hours a day;
see [Goldberg et al., 2003, Goldberg and Siegwart, 2002,
Hu et al., 2001, Safaric et al., 2001, Jia and Takase, 2001]
for recent examples.

Chong et al. [Chong et al., 2000] proposed the follow-
ing taxonomy for teleoperation systems: Single Opera-
tor Single Robot (SOSR), Single Operator Multiple Robot
(SOMR), Multiple Operator Single Robot (MOSR), and
Multiple Operator Multiple Robot (MOMR). Most online
robots are SOSR, where control is limited to one opera-
tor at a time. One precedent of an online MOSR sys-
tem is described by McDonald, Cannon, and colleagues
[Cannon, 1992, McDonald et al., 1997]. In their work, sev-
eral users assist in waste cleanup using Point-and-Direct
(PAD) commands. Users point to cleanup locations in a
shared image and a robot excavates each location in turn.

In [Goldberg et al., 2000,
Goldberg and Chen, 2001], Goldberg and Chen described
an Internet-based MOSR system that averaged multiple hu-
man inputs to simultaneously control a single industrial
robot arm. In [Goldberg et al., 2002, Goldberg et al., 2003]
Goldberg, Song, et al. propose the “Spatial Dynamic Vot-
ing” (SDV) interface. The SDV collects, displays, and ana-
lyzes a sequence of spatial votes from multiple online oper-
ators at their Internet browsers. The votes drive the motion
of a single mobile robot or human “Tele-Actor”.

We formulate the collaborative control problem as a
nonlinear optimization problem with a non-differentiable
objective function. The structure of the problem is
closely related to the planarp−center problem, which
has been proved to be NP-complete by Megiddo and
Supowit [Megiddo and Supowit, 1984]. Using a geometric
approach, Eppstein [Eppstein, 1997] found an algorithm for
the the planar 2-Center problem inO(n log2 n). Halperin
et al. [Halperin et al., 2002] gave an algorithm for the 2-
center problem withm obstacles that runs in randomized
expected timeO(m log2(mn) + mn log2 n log(mn)).

In almost all nonlinear mathematical programming ap-
proaches, a constrained optimization problem is converted
to a series of unconstrained problems using barrier or
penalty methods. Line search is then used to solve the
unconstrained optimization problems. Although there are
many different ways of guiding search direction and step
size, most of these methods are based on derivatives
[Nash and Sofer, 1996].

The camera frame selection problem can be viewed as a
special case of the general “box aggregation” problem over
spatial objects in database research [Zhang et al., 2002].
The spatial objects could be point objects, intervals, or rect-
angular objects. Aggregation over point objects is a special
case of orthogonal range searching in computational geom-
etry. Agarwal and Erickson [Agarwal and Erickson, 1999]
provide a review of geometric range searching and its re-
lated topics. Grossi and Italiano [Grossi and Italiano, 1999,
Grossi and Italiano, 2000] proposed the cross-tree data
structure, a generalized version of balanced tree, to speed
up range searching in high-dimensional space.

Work has been reported on aggregation over point ob-
jects [Chan and Ioannidis, 1999, Geffner et al., 2000,
Ho et al., 1997] and 1D intervals [Yang and Widom, 2001,
Zhang et al., 2001]. Zhang, Tsotras, and Gunopulos
[Zhang, 2002, Zhang et al., 2002] extend the research to
rectangular spatial objects, usually referred to as “aggrega-
tion over spatial objects with extents”. Such aggregation is
not limited to constant weights but also to the more general
case where the weight is a polynomial function of the inter-
section area between the query window and the rectangles.
This general box aggregation problem is also known as a
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functional box sum query.

As in box aggregation problems, the camera frame se-
lection problem can be reduced to dominance sum prob-
lems (defined in section 4.1.2). As shown by Guttman,
dominance sum problems anddominance sum queries can
be solved using rectangle trees (R-Trees) [Guttman, 1984]
or its recent variations [Lazaridis and Mehrotra, 2001,
Paradias et al., 2001] by reducing the problem to range
search. The aggregate is then computed by identifying
the objects that intersect the query range and accumulat-
ing their values incrementally. This method is inefficient
because it is based on how many objects are in the query
range, which can be large. A more efficient data structure
is the ECDF-tree [Bentley, 1980], which solves the domi-
nance sum problem using a multi-dimensional divide and
conquer technique. The original ECDF-tree is a static data
structure but Zhang et al. recently extended it: the dy-
namic ECDF-B-tree allows update and bulk-loading oper-
ations [Zhang, 2002, Zhang et al., 2002]

It is also possible to view camera frame selection as a
clustering problem [Jain et al., 1999, Johnson, 1998]. The
user satisfaction metric function we define later in the pa-
per is based on the resemblance and containment relation-
ship between users’ requested camera frames and real cam-
era frame. The Symmetric Difference (SD) and “Intersec-
tion Over Union”(IOU) are well-known similarity metrics
[Broder, 1998, Broder et al., 2000,
Veltkamp and Hagedoorn, 2000]. The comparison of these
metrics and our metric will be discussed later in the paper.

There is also a connection with distributed manipula-
tion. One branch of distributed manipulation uses potential
fields defined as “potential-per-unit-area” acting on an ob-
ject [Bohringer and Choset, 2000, Moon and Luntz, 2002].
It is possible to interpret the satisfaction function as a spe-
cial “lifted” potential field with some modifications.

Distributed computation has been used for sensor pro-
cessing [Mumolo et al., 2000], multi-actuator control, and
multi-robot systems. Sagawa et al. [Sagawa et al., 2001]
developed a parallel algorithm to merge a set of range im-
ages into a volumetric implicit surface image representa-
tion, which is converted to a surface mesh. Safaric et al.
[Ku et al., 2001] designed a distributed control system for
an active surface device. The active surface device is a mas-
sive parallel micro-actuator array that can generate a pres-
sure field on a planar surface. Applications of distributed
algorithms include motion planing [?, Parker, 2002], local-
ization [Hayes et al., 2001, Mumolo et al., 2000], and task
allocation [Agassounon et al., 2001, Chen et al., 1999].

In independent work, Kimber and Liu et al. de-
scribe a multi-user robot camera in [Kimber et al., 2002,
Liu et al., 2002]. As we do in Sharecam, they formulate
the frame selection for multiple simultaneous requests as an

optimization problem based on position and area of overlap.
To solve it, they propose an approximation based on com-
paring the bounding box of all combinations of user frames.
This algorithm requires exponential time and does not pro-
vide formal bounds on the approximation error.

This paper is an expanded and updated descrip-
tion of results initially presented at the Fifth Interna-
tional Workshop on Algorithmic Foundations of Robotics
[Song et al., 2002].

3 Problem definition

In this section we formalize the Collaborative Frame Se-
lection problem: finding the camera frame that maximizes
total user satisfaction.

3.1 Input and assumptions

Let c be a vector of parameters. For a robotic camera,c =
[x, y, z]T , defines a camera frame:x, y specify the pan and
tilt center point of the frame, andz specifies the size of the
frame. We assume the camera has the standard aspect ratio
of 4:3 and define sizez so that frame length is4z and width
is 3z. (Note thatz is the inverse of the standard camera
zoom parameter).

At each time increment, useri requests a desired frame,
ri = [xi, yi, zi]. Given requests fromn users, we must
compute a single framec∗ that will best satisfy the set of
requests.

Let Θ be the set of all admissible[x, y] pan, tilt pairs.
Let Z be a small set of attainable zoom levels. The solution
space is:

Φ = Θ× Z = {[x, y, z]|[x, y] ∈ Θ, z ∈ Z}.

3.2 Metric for User Satisfaction

Recall thatri is the frame requested by useri, and letc =
[x, y, z]T be a candidate camera frame. We define a scalar
si ∈ [0, 1] as the level of “satisfaction” that useri receives.
Useri gets no satisfaction if the candidate frame does not
intersectri, sosi = 0 whenc ∩ ri = ∅. Useri is perfectly
satisfied when the candidate frame is identical tori: si = 1
whenc = ri. To characterize the satisfaction of useri, we
propose the Intersection Over Maximum (IOM) function:

si(ri, c) =
Area(ri ∩ c)

max(Area(c), Area(ri))

Let z = Size(c) and zi = Size(ri), then for the IOM
function

si(ri, c) =
Area(ri ∩ c)

Area(ri)
min

((Size(ri)
Size(c)

)2
, 1

)
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Figure 2: Examples of the satisfaction metric for user i and
candidate framec.

we can define a Generalized Intersection Over Maximum
function (GIOM):

si(ri, c) =
Area(ri ∩ c)

Area(ri)
min

((Size(ri)
Size(c)

)b
, 1

)
(1)

whereb is a small positive number (b = 2 for the IOM
function).

Note that the second term in 1 characterizes the tradeoff
between union and intersection. Small values ofb produce
camera frames that cover all requested frames (which does
not reflect desired user zoom levels) and large values pro-
duce frames that only cover the intersection of all requested
frames. As described in Section 5, we experimented with
different b values and found thatb = 1 provides a good
balance as illustrated in Figures 2 and 8.

The total satisfaction forn users is

s(c) =
n∑

i=1

si(ri, c). (2)

We want to findc∗ = arg maxc s(c), the frame that maxi-
mizes total satisfaction. To describe the objective function
with respect tox, y, andz,

s(x, y, z) = s(c).

3.3 Properties of the Satisfaction Metric

The GIOM satisfaction functions is nonsmooth and piece-
wise linear in bothx andy, in contrast to the Intersection-
Over-Union (IOU) metric as shown below.

3.3.1 Nonsmoothness

Recall thatArea(ri) = 12z2
i , z = Size(c), andzi =

Size(ri), since we solve this problem for each attainable
zoom levelz, we treatz as a constant. Therefore,Area(c∩

Figure 3: The IOM user satisfaction function,si(x, y),
for a given candidate frame. Sincez ≤ zi is given, we
can move the candidate frame (gray rectangle) around the
useri’s requested frame to observe howsi(x, y) changes.
The function is plateau-like with a maximum height of
Area(c ∩ ri)/Area(ri) = 12z2/12z2

i = (z/zi)2. The
function consists of 5 planar and 4 quadratic surfaces at
the corners.

ri) = pi(x, y) is a function of(x, y). The objective function
defined by equation 1 becomes a function of the center point
of the candidate frame,

s(x, y) =
n∑

i=1

ωipi(x, y) (3)

where

ωi =
1

12z2
i

min((zi/z)b, 1) (4)

is a constant for each user. We know thatpi(x, y) is the area
of the intersection of the requested frame of useri and the
candidate frame(x, y, z). Therefore, the maximum value
of pi(x, y) is min(Area(c), Area(ri)). This property de-
termines that the shape of useri’s satisfaction function is
plateau-like. Figure 3 shows the shape ofsi(x, y) given
z ≤ zi, i.e. the candidate frame is smaller than the re-
quested frame of useri. Note thatsi is non-differentiable
with respect tox andy so we cannot use derivative-based
approaches to solve this problem.

3.3.2 Piecewise linearity inx and y.

Since all requested frames and the candidate frame are
iso-oriented rectangles, the shape of any intersection be-
tween them is also a rectangle with its edges parallel to ei-
therx axis ory axis. Thus the termpi(x, y) in equation 3 is
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Figure 4:The IOM user satisfaction functionsi(y) for two
users. Ordered sets{ỹk} and{x̃k}, k = 1, ..., 8 are corre-
sponding to horizontal and vertical edges of plateaus. Note
that ỹ4 and ỹ5 overlap in this case.

either0 or the area of the rectangle formed by intersection
betweenri andc = [x, y, z]. This yields a nice property:
the pi(x, y) is piecewise linear with respect tox if we fix
y, and piecewise linear with respect toy if we fix x. Since
the total satisfaction metrics(x, y) is a linear combination
of pi(x, y), i = 1, ..., n, it has the same property. Figure 4
shows an example for a case with two requested frames.

3.3.3 Comparison to other metrics.

In pattern recognition and computational geometry
standard similarity metrics are Symmetric Difference
(SD) and Intersection Over Union (IOU)[Broder, 1998,
Broder et al., 2000, Veltkamp and Hagedoorn, 2000]. For a
requested frameri and a candidate framec, the SD metric
is

SD =
Area(ri ∪ c)−Area(ri ∩ c)

Area(ri ∪ c)
.

The intersection-over-union metric is

IOU =
Area(ri ∩ c)
Area(ri ∪ c)

= 1− SD.

Compared with IOU, our satisfaction metric has similar
properties: (i) both attain their minimum value of 0 if and

only if c ∩ ri = ∅, (ii) both attain their maximum value of
1 if and only if c = ri, (iii) both are proportional to the
area ofc ∩ ri, and (iv) both depend—albeit differently—on
the sizes ofc andri. However, neither the IOU nor the SD
metrics are piecewise linear inx or y.

4 Algorithms

In this section we present algorithms for two versions of
the Collaborative Frame Selection problem. We start with
a version in which the pan (x) and tilt (y) are restricted to
a discrete set of equally-spaced values. Subsection 4.1 de-
scribes a algorithm for this discrete version of the problem.
In Subsection 4.2 we allow the pan and tilt to vary contin-
uously. This more general continuous version allows for
an efficient exact algorithm. The algorithm exploits a geo-
metric characteristic of the optimal solution (captured in the
notion of a “virtual corner”). The exact algorithm can also
be distributed across the client machines and the server. The
distributed algorithm is given in Subsection 4.3.

4.1 Algorithms for discrete pan and tilt

4.1.1 Brute force approach.

Let w be the width (in pixels) of the camera’s total
pan range, andh be the height (in pixels) of the cam-
era’s total tilt range. A brute force search for finding
c∗ = arg maxc s(c) evaluates allwhm candidate frames. A
straightforward approach takesO(n) computing time to de-
termine the satisfaction for a single candidate framec. The
total amount of computation of the algorithm isO(whmn).
Although this is linear inn, the constants are large (typi-
cally w = 600, h = 200).

4.1.2 Efficient function evaluation using Functional Box Sum
(FBS) query.

Computing the satisfaction function value for a given
candidate frame can be viewed as a box aggregation prob-
lem over a group of requested frames. As shown in equa-
tion 3, the query result should be a weighted sum of inter-
sected areas between the query window (i.e. the candidate
frame) and requested frames/rectangles. This special box
aggregation problem can be solved by the functional box
sum query introduced by Zhang, Tsotras, and Gunopulos
in [Zhang et al., 2002]. Given a set of pairs consisting of a
rectangular box and an associated value function,

a functional box sum (FBS) query with a boxq
asks for the total value contributed by all boxes
r intersected byq, where the value contributed
by a boxr is the integral of the value function
associated withr overq ∩ r.
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Our satisfaction function (for a fixed zoom level) is a sim-
ple example of a value function. Zhang et al. have shown
that an FBS query in dimensiond can be reduced to2d

dominance-sum queries. We say that a point(x1, y1) is
dominated by a point(x2, y2) if and only if x1 ≤ x2 and
y1 ≤ y2. Given a set of pairs consisting of a point and an
associated value,

a dominance sum query with a pointq asks for
the sum of all values associated with the points
dominated byq.

The reduction is done by first reducing an FBS query to
2d Origin Involved Functional Box Sum (OIFBS) queries
and then showing that each OIFBS query is equivalent to
a dominance sum query. The OIFBS query is a special
FBS query that has bottom left corner of the query win-
dow located at the origin, which is to the left and below
all rectangles. Ford = 2 in our case, figure 5 from
[Zhang et al., 2002] shows how to convert an FBS query
into 4 OIFBS queries.

Figure 5: Convert an FBS query to 4 OIFBS queries in
[Zhang et al., 2002].

The transformation from an OIFBS query to a dominance
sum query converts rectangular spatial objects to point ob-
jects by assigning each vertex a point value function. The
point value function is a linear combination of integrals of
value functions in the original FBS query. An important
contribution of [Zhang et al., 2002] is that it shows how to
generate those point value functions based on the original
value functions. The dominance sum query is then used
to compute the sum of point value functions for dominated
points. Then an evaluation of aggregated point value func-
tions will give the result of the FBS query. In order to ensure
the validity of the transformation, the point value functions
have to be closed under+ or − operators. For example, a
polynomial function can satisfy the condition: adding two
second-order polynomials will generate a new polynomial
of the same order. Since point value functions are linear
combinations of integrals of the value functions in the orig-
inal FBS query, the requirement is equivalent to condition
that the value function in the original FBS query have to be
closed under+ or− operator.

The dominance sum query can be efficiently performed
by preprocessing the requested frames into ECDF tree or
its variations. The 2D ECDF-tree is a two-level tree. The

primary structure is a simple binary tree on the first coordi-
nate of the points. Each internal nodev stores a key and the
sum of the values associated with all the points stored in the
subtree rooted atv. These points are (evenly) distributed
across the left and right child ofv. All points with a first
coordinate smaller than or equal to the key are in the sub-
tree rooted at the left child ofv, while the remaining nodes
are in the subtree rooted at the right child ofv. In addition
to the key and sum, the nodev stores a secondary structure.
This secondary structure is a similar binary tree (1D ECDF
tree) on the second coordinates of all the points stored in the
subtree rooted atv.

A query in the 2D ECDF-tree proceeds as follows. If the
query point is located in the left child, a recursive query of
the left sub tree is executed. If the query point is located in
the right child, the query splits into two sub-queries. The
first sub query is with respect to the 1D ECDF tree in the
left child, which takes care of points falling into the left
child and are dominated by the query point. The second
sub-query is a recursive query on the right sub 2D ECDF
tree. The sum of the two queries gives the result. As shown
in [Bentley, 1980], a query of the 2D ECDF tree requires
O(log2 n) for n points. The construction of the tree takes
O(n log2 n).

The basic ECDF-tree is a static data structure. Zhang
et al. expanded it to the ECDF-B-tree to allow dynamic
updates. The ECDF-B-tree and its variations are proposed
as disk based data structures, which can also be modified
to memory data structures. Zhang et al. have shown that
the query time of ECDF-Bq-tree, which is a variation of
ECDF-B-tree with query time optimized, isO(log2 n) for
2D. Therefore, each FBS query should also beO(log2 n).
Applying the FBS query, we have following algorithm,

Basic FBS Query Based Algorithm

i. For each zoom levelz (m in total)

a. Preprocess requested frames into

an ECDF-Bq-tree O(n log2 n)

b. For each pan and tilt pair(x, y) (wh in total)

Do an FBS query with the frame

(x, y, z) to find its satisfaction. O(log2 n)

ii. Report the pan, tilt, and zoom

with the largest FBS query value. O(1)

This will yield an algorithm with running time of
O(m(n+wh) log2 n). However, we notice that it is not nec-
essary to rebuild the tree for each zoom level. As we men-
tioned earlier, the dominance sum query is used to compute
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the sum of point value functions, which have to be closed
under + or - operation. For equation 4, we know that our
value functionωi(z) will not satisfy the condition for ev-
ery zoom due to the difficulty caused by themin function.
However, at all zoom levels exceptz = zi, whereωi(z)
changes from(zi/z)b to 1, the functionωi(z) is a polyno-
mial function. This indicates that we only need to do a tree
updates at zoom levelszi for i = 1, ..., n instead of rebuild-
ing the whole tree. The update involves a deletion of the
old value function and an insertion of the new value func-
tion at the corresponding nodes and leaves, which should
takeO(log2 n) for 2D ECDF-trees. Therefore, we have fol-
lowing algorithm,

FBS Query Based Algorithm with Tree Updates

i. Construct an ECDF-Bq-tree

for the smallest zoom O(n log2 n)

ii. For each zoom levelz

in an ascended order (m in total)

a. Update the ECDF-Bq-tree if

the zoom level just cross

one ofzi for i = 1, ..., n, (∗∗)
b. For each pan and tilt pair(x, y) (wh in total)

Do an FBS query with the frame

(x, y, z) to find its satisfaction. O(log2 n)

iii. Report the pan, tilt, and zoom

with the largest FBS query value. O(1)

Since there aren request frames, step (**) should
cost O(n log2 n) in total. Other steps will costO((n +
mwh) log2 n) in total. Hence, the following theorem is
true.

Theorem 1. Using an ECDF-Bq-tree, we can solve the
ShareCam problem with discrete pan and tilt inO((n +
mwh) log2 n).

4.2 An algorithm for continuous pan and tilt

We now focus on the more general problem where camera
pan and tilt parameters vary continuously. We show that
user inputs define a finite set of critical points in the objec-
tive space.

4.2.1 Virtual corners

Recall that the objective function for one usersi(x, y) is
plateau-like as shown in Figure 3. The function consists

Figure 6: Illustration of “virtual corners” with geomet-
ric interpretation for two requested frames. A virtual cor-
ner corresponds to a candidate frame that has one corner
at the intersection of one extended vertical edge of a re-
quested frame and one horizontal extended edge of a re-
quested frame.

of 9 facets: 1 top plane, 4 side planes, and 4 quadratic
surface at corners. There are two vertical boundaries and
two horizontal boundaries at the bottom (bounding the en-
tire plateau), the same numbers of similar edges at the top
(bounding the plateau’s flat top), and eight boundaries sepa-
rating side planes and corner quadratic surfaces (see Figure
6(a)).

Forn users, there aren plateaus. We define avirtual cor-
ner as an intersection between any two boundaries, which
includes both intersections of facet boundaries induced by a
single plateau or by two distinct plateaus. Since all plateaus
are iso-oriented, one of the extensions is horizonal and the
other is vertical. Forn requested frames, there areO(mn2)
virtual corners. Figure 6(b) shows the geometric interpre-
tation of virtual corner in the input space. If we map the
virtual corner in the objective space, which describes the
shape of the satisfaction function, back to input space, we
see that the virtual corner corresponds to a candidate frame
that has one corner overlapping with the intersection of two
extensions of edges of requested frames.

Lemma 1. At least one optimal frame is centered at a vir-
tual corner.

Proof. Let c∗ = [x∗, y∗, z∗] be an optimal solution. As dis-
cussed earlier, for a fixedz andx, the objective function
s(y) is piecewise linear. So the optimum must be at a ver-
tex y = ỹ such thats(x∗, ỹ, z∗) = s(x∗, y∗, z∗). We also
know that liney = ỹ in (x, y) plane is one of the horizon-
tal facet boundaries of the plateaus. Similarly, we can find
another optimal frame[x̃, ỹ, z∗], where linex = x̃ is one
of the vertical facet boundaries of the plateaus. Therefore,
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the optimal frame[x̃, ỹ, z∗] is centered at a virtual corner
(x̃, ỹ).

4.2.2 Brute force approach.

Based on the lemma 1, we can solve the optimization
problem by simply checking all combinations of zoom lev-
els and corresponding virtual corners. We evaluate the ob-
jective function for each of theO(n2) virtual corners and
repeat this for each of them zoom levels. It takesO(n)
time to evaluate a candidate framec. Therefore, the brute
force algorithm runs inO(n3m).

4.2.3 FBS query approach

We can do slightly better using the Functional Box Sum
query. Querying with theO(n2) virtual corners at each of
the m zoom levels will yield an algorithm with complex-
ity of O(mn2 log2 n). However, we can do better if (for
a fixed zoom level) we handle all virtual corners with the
samex-coordinate consecutively in order of increasingy-
coordinate, and take advantage of the fact that the objective
function only changes slightly between two consecutive vir-
tual corners.

4.2.4 Efficient traversal of virtual corners.

For n requested frames, we have4n horizontal plateau
facet boundaries{ỹ1, ỹ2, ..., ỹ4n} and 4n vertical plateau
facet boundaries{x̃1, x̃2, ..., x̃4n} for plateaus. As shown
in Virtual Corner Traversal Algorithm, we can reduce the
computation complexity fromO(n3m) to O(n2m). Recall
thatri = [xi, yi, zi], i = 1, ..., n are the requested frames.

In step iii of the Virtual Corner Traversal Algorithm, we
traverse the vertical facet boundaries of the plateaus one by
one. For each vertical edge, we find the maximum by forc-
ing the candidate frame to center at it. Using Theorem 1,
we know that this procedure will find an optimal solution.
It remains to show how much time is required to solve the
resulting problem of finding

max
y

s(x, y, z)

for givenx andz. This special optimization problem can be
solved inO(n) with a sorted sequence{ỹ1, ỹ2..., ỹ4n}. The
objective function is a “summation” ofn plateaus, which is
shown in Figure 4. For fixedx andz, this piecewise linear
function only changes slope at{ỹi}, i = 1, ..., 4n. For each
vertex ỹi, we know how much the slope will change after
crossing the vertex. We can find the maximum objective
value by walking over all ordered vertices{ỹi} from the
one side to the other side on the linex = x̃i . This process
only takesO(n). Therefore, step iii) of the algorithm will
takeO(n2) and the following theorem is true.

Theorem 2. We can solve the Sharecam problem with con-
tinuous pan and tilt in timeO(n2m) for n users andm zoom
levels.

Virtual Corner Traversal Algorithm

s∗ = 0, O(1)

Sort{yi + 1.5zi}, i = 1, ...n O(n log n)

Sort{yi − 1.5zi}, i = 1, ...n O(n log n)

For each zoom levelz (m in total)

i. Compute vertical extended plateau edges

{x̃1, x̃2, ..., x̃4n} O(n)

For each useri, i = 1, ..., n,

x̃4i−3 = xi − 2(zi + z),

x̃4i−2 = xi − 2(zi − z),

x̃4i−1 = xi + 2(zi − z),

x̃4i = xi + 2(zi + z),

ii. Compute the sorted sequence

{ỹ1, ỹ2, ..., ỹ4n}, O(n)

For eachi, i = 1, ..., n

ỹ4i−3 = (yi − 1.5zi) + 1.5z,

ỹ4i−2 = (yi − 1.5zi)− 1.5z,

ỹ4i−1 = (yi + 1.5zi)− 1.5z,

ỹ4i = (yi + 1.5zi) + 1.5z,

Merge the 4 ordered sequences:{ỹ4i−3},
{ỹ4i−2}, {ỹ4i−1}, and{ỹ4i}, i = 1, ..., n

to get the ordered sequence{ỹ1, ỹ2..., ỹ4n},
whereỹ1 is the smallest.

iii. For x = x̃i, i = 1, ..., 4n,

s = maxy s(x̃i, y, z),

if s > s∗ thens∗ = s, x∗ = x̃i,

y∗ = y, z∗ = z.

Output s∗ as optimal objective function value and
(x∗, y∗, z∗) as optimal frame.
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4.3 A distributed algorithm

In the system,n is the number of users online, which is
also the number of computers connecting to our server. The
larger the value ofn, the more computation power we have
in our system. This suggests that a distributed computing
strategy can further improve computational speed. The al-
gorithm described in the previous section can be divided
into client and server components.

The server should do the following.

Server Algorithm

i. Send all requested framesri, i = 1, ..., n to all clients,

ii. Sort sequence{yi +1.5zi} and sequence{yi−1.5zi},
i = 1, ...n and send them to all clients,

O(n log n)

iii. Wait until all clients send their solutions{s∗1, ..., s∗n}
back.

iv. Pick the largest. O(n)

Let us assume thatri = (xi, yi, zi) is client i’s requested
frame. After clienti receives the data from the server, it
executes the following algorithm.

Client Algorithm

s∗i = 0

For each zoom levelz

i. Compute the sorted sequence{ỹ1, ỹ2, ..., ỹ4n},
(Same as the centralized version.) O(n)

ii.a. sa = maxy s(xi− 2(zi + z), y, z), O(n)

if sa > s∗i thens∗i = sa,

ii.b. sb = maxy s(xi − 2(zi − z), y, z), O(n)

if sb > s∗i thens∗i = sb,

ii.c. sc = maxy s(xi + 2(zi − z), y, z), O(n)

if sc > s∗i thens∗i = sc,

ii.d. sd = maxy s(xi + 2(zi + z), y, z), O(n)

if sd > s∗i thens∗i = sd,

Send thes∗i and its corresponding candidate frame to
server.

As we can see from the algorithm, the server runs at

Figure 7:Examples of computed optimal frames (shown in
grey).

O(n log n + mn) and each client runs atO(nm). The fol-
lowing theorem holds.

Theorem 3. We can distribute the Sharecam algorithm
among the server and clients resulting in a running time
of O(n log n + mn).

One can also see from the algorithm that the speed of
computation is limited by the slowest client. One idea is to
set a timeout for clients and have the server run the compu-
tation for clients that do not respond in time.

5 Results

We have implemented the algorithms on a PC with 950Mhz
AMD Athlon CPU and 1GB memory. The machine runs
under Redhat Linux 7.1. The algorithm is programmed in
both Matlab and Java.

Figure 7 shows the results for four different scenarios. As
we can see from Figure 7(a) and (b), the optimal frame does
not necessarily have one corner overlapping with a corner
of a requested frame. However, one corner of the optimal
frame does overlap with one of the virtual corners. Figure
7(b) has three requested frames exactly the same as those
in (a) and one more big requested frame. It is interesting to
see how the optimal frame changes after the big requested
frame joined in the system. Figure 7(c) shows that if all in-
put rectangles fall far way from each other, the algorithm
functions as a chooser, which selects one input rectangle as
the output. Since the algorithm searches optimum bottom-
up, it picks the lowest requested frame as the solution. Fig-
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Figure 8:Relationship between the optimal frame size and
the choice of theb value in GIOM satisfaction metric in
Subsection 3.2.

ure 7(d) shows that a large requested frame does not neces-
sarily yield a large optimal frame.

Figure 8 shows the relationship between the optimal
frame size and the choice of theb value in the GIOM satis-
faction metric. This demonstrates the tradeoff: largeb leads
to large optimal camera frames. Asb → 0+, the optimal
camera frame becomes the smallest frame that contains all
request frame:Area(c ∩ ri) = Area(ri) ∀i. If b → ∞,
then the optimal frame will converge to the rectangle area
that most of requested frame insect each other. The param-
eterb allows us to find the best tradeoff between union and
intersection.

6 Conclusions and future Work

This paper introduces the Collaborative Frame Selection
problem, where multiple users share control of a single re-
mote robotic camera. Each user requests a desired camera
frame by drawing a rectangle over a static global image.
The problem is to find a camera frame that maximizes the
overall user satisfaction. We define a new metric for user
satisfaction and study algorithms for solving the nonlinear
optimization problem.

We review related work and study properties of the objec-
tive function and inherent constraints on the location of ex-
tremal points. We define “virtual corners” and prove that a
global maximum must coincide with one of the virtual cor-
ners. We present algorithms and complexity analysis. For a
discrete set ofm distinct zoom levels and a discrete set of
w × h pan and tilt pairs, we give an exact algorithm runs in

O((n + whm) log2 n). For continuous pan and tilt withm
discrete zoom levels, we give an exact algorithm that runs in
O(n2m) time. An implementation of this algorithm can be
found online at: http://www.tele-actor.net/sharecam/. This
algorithm can be distributed to run inO(nm) time at each
client and inO(n log n + mn) time at the server.

In future work, we will consider versions of the problem
with continuous zoom levels (m = ∞) and on approxima-
tion algorithms. We will also consider extensions to cases
where the solution containsp > 1 frames: allowingp se-
quential views from one camera produces a path planning
problem, and allowingp different cameras produces a vari-
ant of thep-center problem from facility location. Unlike
computing with multiple processors in a single supercom-
puter, distributed computing over the Internet requires input
from a variety of heterogenous processors, each with differ-
ent and varying communication delays and reliabilities. We
are interested in distributed algorithms that optimize perfor-
mance under such uncertainties.
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