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Abstract—To support industrial automation, systems such as
Grasplt! and Dex-Net 1.0 provide “Grasp Planning as a Service”
(GPaaS). This can allow a manufacturer setting up an automated
assembly line for a new product to upload part geometry via the
Internet to the service and receive a ranked set of robust grasp
configurations. As industrial users may be reluctant to share
proprietary details of product geometry with any outside parties,
this paper proposes a privacy-preserving approach and presents
an algorithm where a masked version of the part boundary
is uploaded, allowing proprietary aspects of the part geometry
to remain confidential. One challenge is the tradeoff between
grasp coverage and privacy: balancing the desire for a rich set
of alternative grasps based on analysis of graspable surfaces
(coverage) against the user’s desire to maximize privacy. We
introduce a grasp coverage metric based on dispersion from
motion planning, and plot its relationship with privacy (the
amount of the object surface that is masked). We implement our
algorithm for Dex-Net 1.0 and present case studies of the privacy-
coverage tradeoff on a set of 23 industrial parts. Results suggest
that masking the part using the convex hull of the proprietary
zone can provide grasp coverage with minor distortion to the
object similarity metric used to accelerate grasp planning in Dex-
Net 1.0. Code, data, and additional information can be found at
http://berkeleyautomation.io/privacy.

I. INTRODUCTION

Cloud-based Robotics and Automation systems utilize re-
mote computation and memory, planning actions based on
shared libraries of product data, prior sensor readings, and
maps [18]. Recent research suggests that systems providing
Grasp Planning as a Service (GPaaS) such as Grasplt! [6]
and Dex-Net 1.0 [29] can reduce the time required to plan a
diverse set of robust grasps to cover a new object by leveraging
grasps computed for 3D object models. This motivates the
development of Cloud-based shared and growing datasets
where users can upload new part geometry to a GPaaS and
receive a ranked set of robust grasp configurations. A Cloud-
based GPaaS also eliminates the need for platform-specific
software updates and maintenance.

One challenge for Cloud-based planners is that individual
users may be reluctant or prohibited from sending proprietary
3D geometric data such as connectors between parts, the
diameter of turbine shafts, or gear ratios and pitches. In this
paper we proprose a “’privacy-preserving” approach to grasp
planning where only as subset of the part boundary is exposed.
We define a grasp coverage metric based on dispersion, a
metric of sample coverage used in motion planning [24],
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Fig. 1: Overview of privacy-preserving grasp planning. Industrial users label
proprietary zones on the part with a graphical interface. The masked object is
then transmitted to a Cloud-based grasp planner along with its stable poses.
The grasp planner computes a set of grasps for each stable pose and returns
the grasp sets to the user.

and define part privacy based on the percentage of the mesh
surface that is masked. We present an algorithm for planning
a covering set of robust and collision-free grasps on a masked
part given a set of stable poses for the part on a planar
worksurface and the geometry of a parallel-jaw gripper. We
also explore the tradeoff between privacy and coverage.

We implement the approach based on Dex-Net 1.0 [29] with
tools for labelling proprietary zones of parts and analyzing ob-
ject stable poses and inertial properties before transmitting the
data to a GPaaS as illustrated in Fig. 1. We study the privacy-
coverage tradeoff and the tradeoff between coverage and the
robustness of planned grasps for a set of 23 parts. We compare
three part-masking methods: removing the proprietary zone
on the mesh, replacing each connected component of the
proprietary zone with a bounding box, and replacing each
connected component of the proprietary zone with its convex
hull. Experiments suggest that using only the non-proprietary
zone in planning may lead to grasps that are in collision on the
true object, and that masking the proprietary zone using the
convex hull provides lower dispersion and lower distortion of
the object similarity metric from Dex-Net 1.0 than bounding-
box masking. Furthermore, experiments suggest that coverage
does not increase with increasing privacy or robustness.

II. RELATED WORK

Grasp planning computes a set of grasps for a given object
based on a grasp quality metric [12], [39]. However, in practice
contact points are not known precisely due to imprecision
in perception and control. Several methods have been de-
veloped to handle uncertainty in object pose [37] or contact
location [47], but these methods cannot be easily extended to
handle multiple sources of uncertainty. Robust grasp planning
handles uncertainty in multiple quantities by finding a set of
grasps that maximize an expected quality metric under a set of
sampled perturbations in quantities such as object shape [16],
[28], object pose [45], and robot control or friction [23], [29].



Robust grasp planning is computationally demanding Re-
cent research has studied precomputing a set of grasps for
an object offline and storing robust grasps in a database.
Weisz et al. [45] computed the probability of force closure
Pr under object pose uncertainty for a subset of grasps in
the Columbia grasp database [13] and showed that Pr was
better correlated with physical grasp success than deterministic
metrics. Brook et al. [5] developed a model to predict physical
grasp success based on a set of robust grasps planned on
a database of 892 point clouds. Other recent research has
used databases of 3D models [15], images [26], [38], or point
clouds [25], [34] to estimate the probability of grasp success
from simulation or physical trials. Kehoe et al. [17] transferred
grasps evaluated by Pr on 100 objects in a Cloud-hosted
database to a physical robot by retrieving the object with
the Google object recognition engine. Recently, Mahler et
al. [29] created the Dexterity-Network (Dex-Net) 1.0, a dataset
of over 10,000 objects and 2.5 million grasps, each labelled
with Pr under uncertainty in object shape, pose, and gripper
positioning, and used the dataset to speed up grasp planning.
We extend Dex-Netl.0 with an algorithm that plans a covering
set of grasps to ensure reachability under different accessibility
conditions subject to preserving proprietary part geometry.

A Cloud-based grasp planner raises the issue of how to
store and transmit data without compromising proprietary
geometric information [40]. This is an example of “privacy
over structured data,” a topic in database research in which
deterministic cryptographic techniques are used to preserve
privacy for widely-used data analytics [4]. In robotics and
automation systems, security is a topic of interest for the smart
grid [20] and manufacturing pipelines [14], and has also been
studied in the context of hackers gaining access to unmanned
aerial vehicles (UAVs) [19] and ground vehicles [44]. Our
methods are closely related to past work on the security of
3D models. Early research considered watermarking schemes
that embed information such as the model owner directly
into the geometry to identify theft, for example by using the
spectral domain of the mesh [35]. Koller et al. [21] developed
a rendering system that allows users to view low-resolution
copies of the entire model and request high-resolution snippets
from a protected server to prevent acquisition of the entire
model geometry. In industry, models are often protected using
industrial computer-aided design (CAD) software, which is
usually bundled with tools for removing details from a model.
Solidworks [3] and Autodesk Inventor [1] both contain tools
for “defeaturing” a mesh by filling holes, smoothing details,
and removing internal features. Other techniques include low-
pass filtering [41], Finite Element Re-meshing [32], and fea-
ture suppression [10].

Our notion of grasp coverage is also closely related to
past research in motion planning and grasping. In motion
planning, Lavalle et al. [24] introduced the notion of dispersion
to construct deterministic sampling strategies for Probabilis-
tic Roadmap Planners that better cover the configuration
space. [24]. This research has been extended to adaptive sam-
pling strategies that reduce dispersion [27] and to deterministic

sampling strategies for SO(3) by Yershova et al. [46]. In
grasping, coverage research has focused on sampling dense
grasp and motion sets for finding grasps in cluttered scenes [9],
adaptive sampling of robust grasps over an object surface [7],
or analyzing the space of all possible grasps on polygonal
objects [43]. However, formal methods for measuring the
coverage of grasp sets are relatively less studied. In this paper,
we introduce a formal notion of grasp coverage based on the
dispersion between the set of planned grasps and all possible
grasps on the object.

III. DEFINITIONS AND PROBLEM STATEMENT

In this paper, we consider the precomputation of a set of ro-
bust parallel-jaw grasps for a 3D object model using a masked
version that obscures proprietary geometric information. Our
goal is to plan a set of grasps I' on the masked object such
that the computed grasp set is robust and covers the available
surface of the original object.

A. Assumptions

Given binary quality metric S(g) that maps grasps to {0, 1},
we measure grasp quality by robustness, or the probability
of success Ps(g) = E[S(g)] under uncertainty due to im-
precision in sensing and control. In this paper, we use the
probability of force closure Pr under uncertainty in object
pose, gripper pose, and friction coefficient as the quality
metric, soft finger point contacts, and a Coulomb friction
model. For more details on our uncertainty and force closure
model, see [29]. We assume the exact object shape is given
as a compact surface in units of meters with a given center of
mass z € R3.

B. Object Parameterization

We use the object parameterization illustrated in Fig. 2. We
parameterize each object as a mesh M C R3. We represent
a mesh M as the tuple (V,7) where V is a set of vertices
and 7 is a set of triangles interpolating 2-dimensional surfaces
between the vertices. Each vertex v € V is specified as a point
in 3D space and each triangle t € T is specified as a triplet
of vertex indices. All vertices of M are specified with respect
to a reference frame centered at the object center of mass z
and oriented along the principal axes of the vertex set.

We model the object as resting on an infinite planar work-
surface under quasi-static conditions with a uniform prior
distribution on part orientation. Under this assumption, the
object rests in a stable pose, or orientation such that the
object remains in static equilibrium on the worksurface [31],
[11]. A triangular mesh has a finite set of stable poses
S = {51...,S¢} modulo rotations about an axis perpendicular
to the worksurface, and each stable pose S; is parameterized
by the table normal n; and a point on the object touching the
table surface p;.

C. Object Privacy

To protect privacy, let each object M = (V, T) be equipped
with a privacy mask, or function Z : T — {0,1} such that a
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Fig. 2: Illustration of our notation. (Left) The object frame of reference is
centered at the center-of-mass z. Each object is associated with a set of
stable poses (planar worksurface orientations) defined by the plane (n;, p;).
(Middle) We can parameterize parallel-jaw grasps by their center x and axis
u, which defines a gripper pose when the angle 6 of the gripper approach
axis w is specified. (Right) A parallel-jaw gripper R contacts a mesh M at
points c¢1 and c2. The space of all possible grasps is the space of all contact
pairs. Each mesh is divided into a private region P (blue) and public region

Q (grey).

triangle t € 7 must remain private if Z(t) = 1. We denote
by P(M,Z) = {t € T | Z(t) = 1} the private region of
the object and Q(M, Z) = M \ P(M, Z) the public region.
We create a masked version of the object pz (M) using a
masking function ¢z such that ¢z (P) # P and ¢z(Q) = Q.
We measure the degree of privacy for a mesh by +, the ratio
of the surface area of P to the total surface area:

v(M, Z) = Area(P(M, Z))/Area(M).

D. Grasp Parameterization

Our grasp parameterization is illustrated on the right side
of Fig. 2. Given an object M, let G(M) = M x M be the
space of all possible contact point pairs on the object, and let
g = (c1,¢2) € G be a parallel-jaw grasp. We can alternatively
describe a grasp g by the midpoint of the jaws in 3D space
x € R3 and approach axis u € S? where

C2—C

and u=—.
ez —eil2

1
X = 5(01 + CQ)
We can also convert a grasp g to a gripper pose 7(g,6) €
SE(3) relative to the object by specifying an angle 6 of the
gripper approach axis w.

E. Grasp Subsets

Let R denote a mesh model of a robot gripper and R(g, ¢)
denote the gripper model in pose T'(g, 6). Of particular interest
are the following subsets of grasps:

Reachable Grasp Set, X (R, S;): The reachable grasp set
is the set of grasps on M such that R(g, #) does not collide
with the object M or the worksurface for stable pose S;.

Robust Grasp Set, )(7): The set of grasps on M with Pg
greater than some threshold 7.

Executable Grasp Set, £(R, S;, 7): The intersection of the
reachable and robust grasp sets: £ =X N ).

E Grasp Coverage

Consider an arbitrary grasp set ¥ C G on object M and a
discrete set of planned grasps I' C Y. We measure the extent
to which I' covers T using dispersion [24], [33], a measure of

Fig. 3: Illustration of the grasp dispersion metric ¢. (Left) In the workspace,
the public region of an object (grey) is covered by a set of grasps I' (green).
Each grasp is illustrated by a line segment with orientation u centered at x.
Each grasp is a sample from a larger space of possible grasps Y, such as the
set of all possible grasps on the part. The farthest grasp in Y from grasps
in T" is shown in red. (Right) We measure coverage by the dispersion 4, or
the radius of the largest empty ball centered in Y. Lower dispersion indicates
higher grasp coverage.

coverage previously used to analyze sampling-based motion
planners.

To measure coverage, we first need a notion of grasp
distance. We measure the distance between grasps for object
M by a function p : G x G — R [22], where:

P(8i,8j) = MM)|[xi — x|z + (2/7) arccos(|(u;, uj)|)

where A(M) is a constant controlling the relative weighting of
the distance between the grasp center and axis. In this work we

choose A(M)~! = max vHxi — X;||2 to put equal weighting
Xi,X; €
between the center and axis distances.

Dispersion, illustrated in Fig. 3, is formally defined as [27]:
6(',T) = sup min p(g;, g;)-
gje'rgier
In the case of ' = &, we let §(I',T) = oo. Intuitively, &
measures the radius of the largest ball (under p) in T that

does not touch any samples in I'. We define a coverage metric
as an inverse of dispersion.

Definition IIl.1. The coverage for T with respect to Y is
OZ(F, T) = eXp(fa(Fa T))

Coverage approaches 1 as dispersion decreases and is approx-
imately zero as the dispersion becomes infinite.

G. Objective

Our formal objective is to plan a set of n grasps I' =
{g1,...,&x} on the masked object such that ' C £(R,S;, 7)
and the coverage a(T", £) is as small as possible. Note that T’
must be a subset of the grasp sets on the original object, even
though it is planned using the masked version.

IV. PRIVACY-PRESERVING GRASP PLANNING ALGORITHM

Algorithm 1 details our algorithm for privacy-preserving
grasp planning, which is also illustrated in Fig. 1. The
algorithm takes as input the object mesh M, a masking
function ¢ (see Section V), and parameters for the executable
grasp set, and returns a set of grasps I'; and robustness



metrics R; for each stable pose S; of the object. With user
inputs, the system masks the object and compute stable poses
before transmission, then computes a set of candidate public
grasps by considering all possible pairs of contacts at mesh
triangle centers, and then prunes grasps based on collisions
and robustness to form a subset of the grasp set for each
stable pose. We measure the robustness Pg of each grasp using
the probability of force closure Pr under object pose, gripper
pose, and friction uncertainty, and compute Pr using Monte-
Carlo integration (for more details, see [29]).

A. Grasp Candidate Generation

We form a set of candidate grasps for each object by form-
ing a set of candidate contact points from the mesh triangle
centers and then evaluating and pruning pairs of possible
contacts. In order to ensure that the set of contacts covers the
mesh surface, we first subdivide triangles of the masked mesh
using primal triangular quadrisection [36] until the maximum
edge length of each triangle is less than some threshold e,
transferring the privacy label Z(t;) from each triangle to its
children. We then use the set of triangle centers on the public
zone of the subdivided mesh as our set of candidate contacts
C since the geometry of triangles in the proprietary zone may
have been altered. The triangle subdivision step increases the
density of our candidate grasp set.

B. Privacy-Coverage Tradeoff

The set of possible contacts decreases as the surface of the
part becomes more private, which intuitively would lead to a
smaller grasp set and therefore smaller coverage. This property
holds formally for the Privacy-Preserving Grasp Planning
Algorithm. Consider a part with two masks Z; and Z, such
that proprietary zones are nested, P(M, Z;) C P(M, Zs).
Then the candidate grasp sets G; and G, are also nested,
G2 C Gi. If n > |G| then the loop on line 15 terminates
only once all possible contact pairs have been evaluated, and
thus the planned grasp sets are also nested I'o C I'y. Therefore
0[(].—‘175) = O[(F27g).

V. PART MASKING

Before transmitting the part across a network for grasp
planning, the part must be masked to ensure that proprietary
geometry is not compromised. Our proposed method, illus-
trated in the left panel of Fig. 1, consists of a labelling tool for
industrial users to select proprietary zones via a graphical user
interface and a mask application stage before transmission.

A. Labelling Tool

To use our graphical tool for labelling the proprietary zones
of parts, a user first loads a mesh and orients the mesh such
that the proprietary zone of the mesh lies within a bounding
box in a graphical user interface. Then the user drags the
mouse to form a box in pixel coordinates, and any triangles
that project within the bounding box are labelled private. The
labelled region of the part is then colored blue for the user
to either accept or reject the label. If the label is accepted

1 Input: Object Mesh M, Masking Function ¢, Robot Gripper
R, Quality Threshold 7, Stable Pose Threshold p, Number of
Grasps n, Edge Length Threshold €, Robustness metric Pg
Result: Grasp Set I' and Robustness Metrics R
// Mask mesh and analyze stable poses

2 § = StablePoses(M, p);

3 Z = UserLabel(M);

pz(M) = Mask(M, Z, ¢);

// Generate grasp candidates

pz(M) =Subdivide(pz (M), €);

C=T=R=u;

for t € pz(7T) do

if Z(t) = 0 then

‘ C = C U {Center(t)};

10 end

11 end

// Compute cover for each stable pose

12 for S; € S do

13 FLI@,RZ:@,‘]IO,

14 G; = Shuffle(C x C);

15 while ;| < n and j < |G;| do

16 g = Giljl:

17 if gZT'; and Ps(g) > 7 and

NoCollision(g, S;, R, pz(M)) then

18 ‘ I; IFiU{g}, R; :RiU{Ps(g)};

'S

R I B Y

19 end

20 J=j+1

21 end

2 r=ru{l},R=RU{R:};
23 end

24 return ') R;
Algorithm 1. Privacy-Preserving Grasp Planning

then we save a binary label for each triangle Z(t;) such that
Z(t;) = 1 if triangle t; is private and Z(t;) = 0 if not.

B. Masking Methods

Fig. 4 illustrates the three methods we compare for obscur-
ing the geometry of a part with a mask. Each method produces
a masked part ¢z (M) = (¢z(V),pz(T)) from the original
part M = (V,T). The methods were chosen to completely
obscure the private region, motivated by techniques from prior
research on 3D model privacy [10], [21], [41].

Deleted Mesh. The masked triangle list ¢z (7") contains all
triangles from the public zone of the mesh (Z(t;) = 0) and
all triangles from the private zone (Z(t;) = 1) are deleted.
The masked vertex list ¢z()) contains all vertices that are
referenced by a triangle in (7). One potential shortcoming
of this method is that some areas on the masked object may
appear reachable by a gripper but cannot be reached on the
true object due to collisions.

Bounding Box. The masked part ¢z(M) contains all
triangles and vertices from the public zone of the mesh, and
triangles and vertices from the private zone are broken into
connected components. Each connected component is replaced
by a cube oriented along the rotational axes of the reference
frame for the original part. The bounding boxes are zippered
to the original mesh [30], [42]. This method preserves the
reachable areas of the part, however the size of the bounding
boxes can prune grasps that are reachable on the original part.
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Fig. 4: Illustration of the different methods for masking proprietary zones
(highlighted in blue) on five example parts. (Left to right) One method to
mask parts is to delete the proprietary zone of the mesh, however this can
lead to planned grasps in collision on the original object. To avoid collisions,
the proprietary zone can be replaced with its bounding box or convex hull.

Convex Hull. The masked part ¢z (M) contains all trian-
gles and vertices from the public zone of the mesh. Triangles
and vertices from the private zone are broken into connected
components, each of which is replaced by its convex hull.
The convex hulls are zippered to the original mesh [30], [42].
This method preserves the reachable areas of the part but may
also induce collisions for grasps that are collision-free on the
original part.

VI. EXPERIMENTS

We implemented the described algorithm for privacy-
preserving grasp planning in Dex-Net 1.0 and planned grasp
sets I' C & for a set of 23 parts from Thingiverse [2].
Unless otherwise noted, our experiments used a number of
grasps n = 10,000, a Pp threshold of 7 = 0.01, and an
edge length threshold of 2.0cm. We compute the stable poses
for each object following [11] and use the stable pose with
highest probability of occurrence under a uniform distribution
on part orientation. We used a mesh model of a Zymark
parallel-jaw gripper with custom fingers as the gripper R,
and performed collision checking in OpenRAVE [8]. For
computing grasp poses we set 6 such that the approach axis
w was maximally aligned with the table normal given the
stable pose. Evaluation of Pr was performed with 25 random
samples using the Monte-Carlo integration method [16]. The
average computation time to mask the object for the deleted
mesh, bounding box, and convex hull methods were 0.72s,
1.22s, and 1.29s respectively.

Masking Method || Mean o | % Collision | Similarity

Mesh Deletion 0.79 6.9 1.05
Bounding Box 0.70 0.0 2.60
Convex Hull 0.74 0.0 3.22

TABLE I: Evaluation on the 23 test parts for masking by deleting vertices,
replacing the proprietary region with a bounding box, and replacing the
proprietary region with a convex hull. The mean coverage « over all objects
is best for mesh deletion, however the planner may return grasps that are in
collision on the nominal part. Since both the bounding box and convex hull
are supersets of the original geometry, neither leads to any grasps in collision.
Of the two, the convex hull method performs better in average coverage and
similarity to the original object according to the MV-CNN similarity metric
of Dex-Net 1.0.

2 88 &

Fig. 5: Illustration of grasps in collision planned on a part using the mesh
deletion method. These failures occur because the true geometry of the private
part blocks access of a gripper to the planned contacts.

A. Label Selection

We used human labels to mask features (holes, air flows,
or connectors) of each part to reflect the coverage metrics and
tradeoffs that might be observed in practice, since proprietary
features are often masked by hand in industry. A single human
user without prior knowledge of the details of the Privacy-
Preserving Grasp Planning algorithm used our tool to label
each of the 23 parts with a single proprietary zone and also
labelled four of the parts with a set of five disjoint masks to
study the privacy-coverage tradeoff. The user was instructed
to label the largest feature on the part surface of each as
proprietary for the single masks, and to mask the five largest
features in arbitrary order for the nested masks.

B. Comparison of Masking Methods

Table I compares each of the masking methods from
Section V in terms of the average coverage metric for the
single mask dataset over the stable poses of the 23 parts,
the percentage of planned grasps that are in collision on the
true object, and the Multi-View Convolutional Neural Network
object kernel similarity metric from Dex-Net 1.0 [29]. High
similarity to the original object indicates that the masked
mesh could be used to accelerate grasp planning for new
objects with prior data. We observe the method of deleting
the proprietary region of the mesh performs well in terms
of coverage but leads to planned grasps in collision on the
original object, which could be problematic if the grasps were
executed without further checks. Fig. 5 illustrates some of
these failure modes. Grasps planned on the convex hull masked
parts are never in collision on the original part and provide
higher coverage and higher similarity to the original object
than the bounding box method, suggesting that speedups with
prior data observed in Dex-Net 1.0 [29] would hold.
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Fig. 6: Plotting the privacy-coverage tradeoff and robustness-coverage tradeoff
for four example parts (a gearbox, an extruder, a nozzle mount, and an idler
mount), each with a sequence of nested proprietary regions. The functions are
monotone but nonlinear because the set of robust grasps may be more dense
in particular regions of the mesh, and jumps occur when areas of high density
are masked.

C. Privacy-Coverage and Robustness-Coverage Tradeoff

Fig. 6 studies the privacy-coverage tradeoff and robustness
coverage tradeoff on a set of four parts (a gearbox, an extruder,
a nozzle mount, and an idler mount), each with five disjoint
proprietary regions masked using the convex hull method.

For the privacy-coverage tradeoff we compared
a(T',E(R,S;,7)) for the stable pose with the highest
probability and 7 = 0.01 to the privacy metric y. We see that
coverage never increases with increased privacy, consistent
with the theory of Section IV. However, the rate of change
of coverage with respect to privacy does not appear to be
consistent across the examples. This may be because grasps
do not appear to be uniformly distributed across the part
surface, suggesting that removing some parts of the mesh can
affect coverage more significantly than others. This effect is
illustrated in the covering sets displayed in Fig. 7.

For the robustness-coverage tradeoff, we ran the privacy-
preserving grasp planning algorithm with a fixed privacy
mask and robustness values 7 € [0, 1] in increments of 0.05.
We compared (T, E(R,S;,0)) for the stable pose with the
highest probability to the robustness 7 for I' planned by the
algorithm. We see that the coverage always decreases with an
increasing robustness threshold, consistent with the intuition
that the set of possible grasps considered by our algorithm can
only decrease with increasing 7.

D. Covering Grasp Sets

Fig. 7 compares the top 50 most robust grasps from the cov-
ering grasp sets for the original masked part versus the grasp
set computed by our algorithm using convex hull masking for
a set of eight example parts. We see that for several parts, such
as the fan shroud and turbine housing, the set of most robust
grasps is clustered in particular regions of the part geometry
and when this zone is not masked, the coverage remains high.
The covering grasp sets on the original part geometry exhibit
variations in density, which may explain the part-variation
in the privacy-coverage tradeoffs reported in Section VI-C.
Our algorithm correctly avoids the proprietary region of the
part and prunes grasps in collision near the table and ares of
complex part geometry.

E. Computation Times

The runtimes in seconds for the Privacy-Preserving Grasp
Planning algorithm on the eight parts in Fig. 7 were (left to
right, top to bottom): 40.0, 36.5, 38.6, 39.1, 41.2, 42.0, 39.6,
and 48.9. On average planning took 0.25 seconds per grasp,
consistent with the results reported in [29]. All planning was
performed on an Intel Core i7-4770K 3.5 GHz processor with
6 cores.

VII. DISCUSSION AND FUTURE WORK

This paper presented an approach to privacy-preserving
grasp planning: finding a set of robust grasps for parts
while preserving proprietary geometric features. The algorithm
masks the part using the convex hull of the proprietary region
and evaluates contact pairs on triangles from the public region
of the part surface, checking collisions and the probability
of force closure for each. We also introduce grasp coverage
based on dispersion. Experiments suggest that the convex hull
masking method outperforms mesh deletion and bounding box
masking and that coverage decreases with increasing privacy,
and the increase is roughly proportional to the density of
grasps in the private region of the mesh.

In future work we will further study the privacy-coverage
tradeoff with additional parts and work with industrial experts
to refine the privacy-labelling interface and perform physical
experiments. We will investigate approaches to increasing
computational efficiency by actively identifying candidate
grasp surfaces that lack coverage, for example using anneal-
ing [6] or Multi-Armed Bandits [23]. We will also explore
alternate methods to preserve privacy, for example adding
small deformations to the geometry [41]. Furthermore, we will
study algorithms to iteratively trade off privacy with robustness
by iteratively exposing different boundary subsets.
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