
Transition State Clustering:
Unsupervised Surgical Trajectory
Segmentation For Robot Learning

The International Journal of Robotics
Research
XX(X):1–15
c©The Author(s) 2016

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Sanjay Krishnan*1, Animesh Garg*1, Sachin Patil1, Colin Lea2,
Gregory Hager2, Pieter Abbeel1, Ken Goldberg1

Abstract
We present a new unsupervised segmentation algorithm, Transition State Clustering (TSC), which combines results
from hybrid dynamical systems and Bayesian non-parametric statistics to segment kinematic recordings of robotic
surgical procedures. TSC treats each demonstration trajectory as a noisy observation of an underlying switched linear
dynamical system (SLDS) and clusters spatially and temporally similar transition events (i.e., switches in the linear
regime). TSC uses a hierarchical Dirichlet Process Gaussian Mixture Model to avoid selecting the number of segments
a priori. We compare TSC to five alternatives on the respective algorithms’ correspondence to a known ground truth
in a synthetic example: Gaussian Mixture Model, Gaussian Hidden Markov Model, Coresets, Gaussian Hidden Semi-
Markov Model, and an Autoregressive Hidden Markov Model. We find that when demonstrations are corrupted with
process and observation noise, TSC recovers the ground truth 49% more accurately than alternatives. Furthermore,
TSC runs 100x faster than the Autoregressive Models which require expensive MCMC-based inference. We also
evaluated TSC on 67 recordings of surgical needle passing and suturing. We supplemented the kinematic recordings
with manually annotated visual features denoting grasp and penetration conditions. On this dataset, TSC finds 83% of
needle passing transitions and 73% of the suturing transitions annotated by human experts.
Experimental code and datasets are available at: http://berkeleyautomation.github.io/tsc/

Keywords
Trajectory Segmentation, Surgical Robotics, Robot Learning

Introduction

The adoption of robot-assisted minimally invasive surgery
(RMIS) is generating datasets of kinematic and video
recordings of surgical procedures. This data can facilitate
robot learning from demonstrations (Murali et al. 2015),
surgical training and assessment (Reiley et al. 2010;
Gao et al. 2014), and automation (Kehoe et al. 2014;
Mahler et al. 2014). Segmenting this demonstration data
into meaningful sub-trajectories can benefit learning since
individual segments are often less complex, have lower
variance, and it is easier to remove outliers. However, even
in a consistent data collection environment, such as tele-
operation on identical tissue phantoms, surgical trajectories
can vary significantly both spatially and temporally. These
trajectories are further corrupted by random noise, spurious
motions, and looping actions where a surgeon repeatedly
retries a motion until success. The primary challenge in
surgical trajectory segmentation is to identify consistent
segments across a dataset of demonstrations of the same
procedure in the presence of such disturbances.

Segmentation algorithms fall into two broad categories:
(1) supervised approaches that learn from manual annota-
tions or match sub-sequences to pre-defined dictionaries of
primitives (Lin et al. 2005; Varadarajan et al. 2009; Tao et al.
2013; Lea et al. 2015), and (2) unsupervised approaches that
infer the latent parameters of some underlying generative
process (Calinon et al. 2010; Lee et al. 2015; Krüger et al.

2012; Niekum et al. 2012). Consistency and supervisory
burden are a key concern in supervised segmentation as it
is often difficult to precisely characterize what defines a
segment and labeling can be time-consuming. Similarly, it
may be unclear how to specify a dictionary of primitives at
the correct level of abstraction. To the best of our knowledge,
prior work in the surgical setting has been supervised, and
we draw from several studies of unsupervised segmentation
in non-surgical settings to develop a new unsupervised ap-
proach (Calinon et al. 2010; Lee et al. 2015; Krüger et al.
2012; Niekum et al. 2012). Unsupervised approaches largely
apply clustering or local regression models to identify locally
similar states. Transition State Clustering (TSC) extends this
work with a two-phase algorithm that first identifies tran-
sitions states, defined as consecutive time-steps assigned to
different segments, and then, clusters spatially and tempo-
rally similar transition states across demonstrations with a
non-parametric mixture model.

This paper focuses on segmenting trajectories derived
from kinematic and video recordings of surgical robots in

* Authors contributed equally
1University of California, Berkeley
2Johns Hopkins University

Corresponding author:
Sanjay Krishnan
Email: sanjay@eecs.berkeley.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

http://berkeleyautomation.github.io/tsc/

2 The International Journal of Robotics Research XX(X)

Figure 1. We plot 10 trajectories of the end-effector (x,y,z)
positions on an identical circle cutting task on the dVRK. This
plot illustrates the variability of demonstrations even when the
task is identical. The goal of TSC is to identify consistent
transition structure in the demonstrations, and our experiments
in Section illustrate the results.

tele-operation. TSC is also relevant to problems in other
domains, but those applications are outside of the scope of
this paper. Consider two trajectories x1 and x2. x1 and x2
may represent two different linear paths to the same needle
insertion transition. That needle insertion is a invariant
across x1 and x2. TSC attempts to infer such invariants
using spatial and temporal clusters of transitions detected by
changes in motion. The crucial insight is that the sequence
of transition events often has a consistent partial order across
demonstrations–even if the motion between those transition
events is very different. This model can also be coupled with
a series of merging and pruning steps to ensure that only the
most important transition state clusters are retained.

Contributions and Main Results
We present a new unsupervised segmentation algorithm

called Transition State Clustering (TSC), which given
a set of discrete-time trajectories identifies a common
transition structure to segment the trajectories. We treat each
demonstration trajectory as generated from a locally linear
dynamical system with i.i.d process noise wt :

xt+1 = Atxt +wt : At ∈ {A1, ...,Am} (1)

A transition states is a state at which the dynamics matrix
changes at the next time-step At 6= At+1. We model the set
of all transition states as sampled from a probability density
generated from a hierarchical nonparametric Bayesian
model, where the number of regions are determined by a
Dirichlet Process. A series of merging and pruning steps
remove outliers.

We evaluate TSC on real surgical data from the JIGSAWS
surgical training dataset consisting of joint-space trajectories
and video from a fixed camera (Gao et al. 2014), and
a synthetic example consisting of randomly generated
motions of a point robot with variable levels of noise.
On the synthetic examples, we evaluate the ability of five
alternative algorithms, Gaussian Mixture Model, Gaussian
Hidden Markov Model, Coresets, Gaussian Hidden Semi-
Markov Model, and a Autoregressive Hidden Markov
Model, to return a segmentation that has a strong one-
to-one correspondence with a known ground truth. Our
experimental results suggest that TSC recovers this ground
truth with greater accuracy than the alternatives, especially
under low-frequency process noise. For the surgical
experiments, TSC extends to state-spaces the include derived
features from computer vision which are manually derived in

this work. This paper presents the TSC model, and presents
experiments in which we manually label the video stream
with two features: a binary variable identifying object grasp
events and a scalar variable indicating surface penetration
depth. On 67 kinematic and video of surgical needle passing
and suturing tasks from the JIGSAWS surgical training
dataset (Gao et al. 2014) TSC finds 83% of needle passing
transitions and 73% of the suturing transitions found by
human experts.

This paper is a substantially revised and expanded version
of Krishnan et al. (2015). This version includes several new
experiments evaluating TSC against 5 alternative algorithms
(Figure 2-6), an expanded technical discussion about the
model, and revised accuracy metrics consistent with recent
segmentation work in robotics and computer vision.

Background and Related Work
TSC exploits the structure of repeated demonstrations

by first identifying transitions and then correlating them
spatially and temporally across different demonstrations.

Segmentation in Surgical Robotics
To the best of our knowledge, prior work in surgical

robotics has only considered supervised segmentation using
either segmented examples or a pre-defined dictionary called
surgemes. For example, given manually segmented videos,
Zappella et al. (2013) use features from both the videos
and kinematic data to classify surgical motions. Similarly,
Quellec et al. (2014) use manually segmented examples
as training for segmentation and recognition of surgical
tasks based on archived cataract surgery videos. Several
studies use the surgemes to bootstrap learning segmentation,
however, this involved time-consuming the process of
identifying surgemes in existing data sources for use as
training and testing data (Lin et al. 2005; Varadarajan et al.
2009; Tao et al. 2013; Lea et al. 2015)).

Unsupervised Segmentation Models
Unlike supervised segmentation techniques, unsupervised

techniques do not use labels or dictionaries. As such, a key
differentiating factor is the underlying probabilistic model
for segmentation. Consider a continuous time vector-valued
trajectory, which is a sequence of T vectors xt in some
vector-space Rp.

Gaussian Mixture Models: Many unsupervised segmen-
tation techniques are based on Gaussian Mixture models
(GMM). GMMs are particularly intuitive since Ghahramani
and Jordan (1993) showed that GMMs are a form of local
linear regression; linearizing around the mixture means.

Lee et al. (2015) identify segmentation points in a
trajectory by fitting a GMM directly to the data. That is,
the sequence [x1, ...,xT] is modeled as a sample from a
GMM, and they assign each xt to the most likely mixture
component. They tune the number of mixture components
using the Bayesian Information Criterion, and apply PCA
dimensionality reduction before applying the GMM for
tractability. By treating the sequence as a sample from
a GMM, this approach does not consider dynamics and
correlation between demonstrations.

Prepared using sagej.cls

Krishnan, Garg et al. 3

One solution is to draw from the dynamical systems
literature (Khansari-Zadeh and Billard 2011; Moldovan et al.
2015) and model the trajectory xt as a noisy autonomous
dynamical system:

ẋ = ξ (x)+w

It can be shown to linearize this system in the same way as
in (Lee et al. 2015), but instead of applying the GMM to
the set of states xt , we have to apply a GMM to samples
of

(x
ẋ

)
or

(xt
xt+1

)
in discrete-time. This approach is used

by Krüger et al. (2012), and like TSC they also use a
Dirichlet process prior to learn locally linear dynamics.
Transition State Clustering builds on these GMM approaches
with a two-phase algorithm that first identifies transitions
states in a way similar to Krüger et al. (2012) and then,
clusters spatially and temporally similar transition states
across demonstrations with a non-parametric mixture model
under the assumption that each demonstration follows the
same partial order of transitions up-to noise and loops.

Hidden Markov Models: One approach to deal with
spatial and temporal variation is to model the high-level
progression of a task as a finite-state Markov Chain (Asfour
et al. 2008; Calinon and Billard 2004; Kruger et al. 2010;
Vakanski et al. 2012), for example, primitive A progresses
to B with probability 0.75 and to C with probability 0.25.
Such a model is class of Hidden Markov Models since this
Markov chain is not directly observed. Given the current
state of this Markov chain, the system will either “emit”
different states (e.g., Gaussian HMM) or have different
dynamics (e.g., Autoregressive HMM). This logic has been
extended to more complex transition dynamics such as the
Hidden Semi-Markov Model, which additionally models the
amount of time spent in a given state (Tanwani and Calinon
2015). There is also the related “workflow” HMM proposed
by Padoy et al. (2009). The HMM, HSMM, and their
variants impose a probabilistic grammar on transitions, and
the inference algorithm estimates the transition probabilities
from data. Accordingly, they can be sensitive to hyper-
parameters such as the number of segments, the amount
of data, and noise (Tang et al. 2010). The problem of
robustness in GMM+HMM (or closely related variants)
has been addressed using down-weighting transient states
(Kulić and Nakamura 2008) and sparsification (Grollman
and Jenkins 2010; Mohan et al. 2011).

There have been several Bayesian extensions to these
models, which model the time-series as a stochastic
process and learn the parameters with MCMC or Stochastic
Variational Inference. Willsky et al. (2009) proposed Beta
Process-Autoregressive-Hidden Markov Model, which was
applied by Niekum et al. (2012) in robotics. This model is
fits an autoregressive model to time-series, where xt+1 is
a linear function of states xt−k, . . . ,xt . The linear function
switches according to an HMM with states parametrized by
a Beta-Bernoulli model (i.e., Beta Process). While HMMs
and GMMs also draw from the Bayesian literature, they
differ from recently proposed Bayesian segmentation models
as they are typically solved more efficiently with analytic
expectation maximization algorithms. Similarly, TSC is
motivated by Bayesian non-parametrics, there are several

features of the algorithm that are motivated by frequentist
statistics (e.g., outlier rejection using merging and pruning).

We evaluate against these approaches (GMM+HMM,
ARHMM, and HSMM) in our experiments and find that TSC
is more robust to un-modeled noise. The intuition is that
Hidden Markov approaches make the implicit assumption
that “the low-level dynamics within a segment are more
structured and predictable than the higher-level dynamics
that govern transitions between segments” (Saeedi et al.
2016). In contrast, TSC explores the converse, suppose the
low-level dynamics are uncertain and noisy, but the high-
level dynamics follows a consistent partial order of events
across demonstrations and these events are spatially and
temporally correlated.

Coresets: A coreset is defined as a query-dependent
compression of a dataset D, such that running the query
q results in a provably approximate result. This idea
can be used to devise a locally linear segmentation
technique Rosman et al. (2014); Sung et al. (2012); Volkov
et al. (2015); Rosman et al. (2014). The query q is the
solution to the k-line segment problem, which fits a k line
segments to a trajectory. The idea is to find a compressed
dataset such that the lines can be accurately reconstructed.
The main benefit is that this results in segmentation
with provable properties, such as sample complexity and
convergence. However, the models used in prior work do not
consider switched linear dynamics, non-parametrics when
choosing k, or robustness to loops.

Problem Setup
This section describes the problem setting, assumptions,

and notation.

Demonstrations
Let D = {di} be a set of demonstrations. Each

demonstration di is a discrete-time sequence of Ti state
vectors in a state-space Rp. Associated with D is a set of
k transitions which are informally defined as state-space
and temporal conditions that trigger a change in motion,
in the following section, we will precisely characterize this
definition. Thus, each demonstration di can be represented
as a sequence of labeled transitions {1, ...,k}, e.g., d1 =
[S1,S2,S4], d2 = [S3,S1,S4]. The goal of Transition State
Clustering is to learn the sequence of transitions that
consistently occur across all demonstrations e.g., [S1,S4], and
associate them with states in a trajectory.

Regularity
Without regularity assumptions on the demonstrations,

there may not be a meaningful common structure. For
example, we could observe:

d1 = [S1,S3,S5], d2 = [S2,S4,S6],

where there does not exist any overlap between d1 and d2.
Therefore, we assume, the set of demonstrations is regular,
meaning there exists a non-empty sequence of transition U∗

such that the partial order defined by the elements in the
sequence (i.e., S1 happens before S2 and S3) is satisfied by

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

every Ui. For example,

U1 = [S1,S3,S4], U2 = [S1,S1,S2,S4], U∗ = [S1,S4]

An example of an irregular demonstration set is

U1 = [S1,S3,S4], U2 = [S2,S5], U∗ no solution

Intuitively, this condition states that there have to be a
consistent ordering of transitions over all demonstrations up
to some additional transitions (e.g., spurious actions). We
will show that we can extend this condition such that only a
fraction ρ of the demonstrations need to be regular; thereby
pruning the inconsistent transitions.

Looping
Loops, or repetitions of an action until the desired

outcome, are common in surgical demonstrations. For
example, a surgeon may attempt to insert a needle 2-
3 times. For example, let us assume that a surgeon is
attempting to insert a needle and fails to do so 2 times. If
in all other demonstrations, there is only a single transition
representing needle insertion (i.e., transition “1”), we might
detect multiple transitions S′1 and S†

1 demonstration with
loops. Ideally, we would like to compact these repeated
motions into a single transition:

U1 = [S1,S3,S4], U2 = [S1,S′1,S
†
1,S3,S4], U∗ = [S1,S3,S4]

We assume that these loops are modeled as repeated
transitions, which is justified in our experimental datasets.
This assumption may seem at odds with our argument that
surgical demonstrations are highly variable. We find that
while the motions between transitions are variable and noisy,
up-to loops and extra transitions, the high-level sequence of
transitions is relatively consistent. In the future, we hope to
explore more complex models for failure and retrial, and
we believe that variants of our approach can be applied in
conjunction with Hidden Markov Models.

Problem Statement
In this paper, we focus on segmentation for surgical

robotics applications on the da Vinci surgical robot.
However, we do believe that TSC is broadly applicable
to other robotics domains and data collected from other
platforms. Other than the regularity assumptions above and
the implicit assumptions about local linearity discussed in
the next section, we make no assumptions about the nature of
the trajectories given to TSC. In our experiments, we define
the state-space to be the 6-DOF orientation of the robot end-
effector.

One challenge is that the kinematic state of the robot may
not be sufficient to describe the system or its interaction
with the environment. We additionally demonstrate TSC
with features constructed from video. Suppose at every time
t, there is a feature vector vt composed of discrete and
continuous features. Then, we define an augmented state of
both the robot kinematic state and the features denoted is:

xt =

(
ct

vt

)
Consider the following features:

1. Grasp. 0 if empty, 1 other wise.

2. Needle Penetration. We use an estimate of the
penetration depth based on the robot kinematics to
encode this feature. If there is no penetration (as
detected by video), the value is 0, otherwise the value
of penetration is the robot’s z position.

Our goal with these features was to illustrate that TSC
applies to general state-spaces as well as spatial ones,
and not to address the perception problem. These features
were constructed via manual annotation, where the Grasp
and Needle Penetration were identified by reviewing the
videos and marking the frames at which they occurred. We
completely characterize TSC without such features on a
synthetic dataset against alternatives, and for the surgical
data present results with and without these features.

Problem 1. Transition State Clustering. Given a set of reg-
ular demonstrations D, partition each di ∈D into a sequence
of sub-trajectories defined by transitions [S(i)1 , ...S(i)k]. Each
transition should correspond to exactly one other transition
in at least a fraction of ρ demonstrations.

A Probabilistic Model For Transitions
In this section, we formalize the definition of transitions

and transition states.

Demonstrations as Dynamical Systems
Each di is a trajectory [x1, ...,xT]. We model each

demonstration as a realization of a noisy dynamical system
governed by the dynamics ξ and i.i.d Gaussian white noise:

xt+1 = ξ (xt)+wt (2)

We assume that ξ is locally-linear and can be modeled as
switched linear dynamical system. That is, there exists m
d×d matrices {A(1), ...,A(m)}:

xt+1 = Atxt +wt : At ∈ {A(1), ...,A(m)} (3)

A transition states is defined as a state at which the dynamics
matrix changes at the next time-step At 6= At+1.

Transition State Distributions
Over all of the demonstrations D, there is a corresponding

set Γ of all transition states. We model the set Γ as samples
from an underlying parametrized distribution over the state-
space x ∈ Rp and time t ∈ R+.

Γ∼ fθ (x, t)

As the name suggests, Transition State Clustering fits
mixture models to fθ , and this has the interpretation
of correlating transition events spatially and temporally.
Depending on how we choose to define this joint distribution,
we can model different phenomena. We use different
hierarchies of Gaussian Mixture Models.

Time-Invariant Transition State Model: The most
straight-forward approach is to consider an f that is

Prepared using sagej.cls

Krishnan, Garg et al. 5

independent of time. This means that:

∀t, t ′ ∈ [0,T] : fθ (x, t) = fθ (x, t ′)

Then, we can model the distribution as a GMM over just the
state-space:

fθ (x) = GMM(π,{µ1, ...,µk},{Σ1, ...,Σk})

However, this model cannot handle trajectories that cross
over the same state multiple times, e.g., a figure 8 trajectory.

Time-Varying Transition State Model: We can extend
the above model to consider time-varying distributions. We
do this by splitting the distribution into a product of two
components, one that is time-invariant and one that depends
on time conditioned on the current state. This is a natural
consequence of the chain rule where we can decompose
fθ (x, t) into two independently parametrized densities p,q:

fθ (x, t) = pθp(x) ·qθq(t | x)

If we model p as a GMM, then for every x will be drawn
from one of the {1, ...,k}mixture components. We then make
a simplifying assumption that this mixture component is a
sufficient statistic for qθq . Let z ∈ {1, ...,k} be this mixture
component, then, we can apply the time-invariant model
from above for p, and we can apply a separate GMM for
q conditioned on each possible z:

qθq(t | z) = GMM(λ ,{µ1, ...,µlz},{σ1, ...,σlz})

In other words, a GMM models the spatial transition states
distribution, and within each Gaussian, the states are further
drawn from a GMM over time. The resulting mixture model
for f has ∑

k
i=1 li components.

Multi-modal Transition State Model: The same logic
can be used to model multiple sensing modalities (e.g.,
kinematics, vision). Let

(x
v

)
be a state-space constructed of

kinematics and visual features x and v respectively. Consider
the following decomposition p,q,r:

fθ (x, t) = pθp(x) ·qθq(v | x) · rθr(t | x,v)

As in the time-varying case p,q,r are each modeled as
GMMs conditioned on the the mixture component of x and
x,v respectively.

Figure 2. Transition State Clustering models the set of
transition states S as a sample from a mixture model that
depends on the state x, the time t, and other features v.
Different probabilistic models can capture different phenomena

Feedback Model
The proposed model describes systems controlled with

linear state feedback controllers to the centroids of the k

targets [µ1, ...,µk]. We can show that the Transition State
Clustering model naturally follows from a sequence of stable
linear full-state feedback controllers sequentially controlling
the system to each µi (up-to some tolerance defined by α).

Consider a single target µi. Suppose, we model the robot’s
trajectory in feature space as a linear dynamical system with
a fixed dynamics. Let Ar model the robot’s linear dynamics
and Br model the robot’s control matrix:

xt+1 = Arxt +Brut +wt .

The robot applies a linear feedback controller with gain Gi,
regulating around the target state µi. This can be represented
as the following system (by setting u(t) =−Gix̂):

x̂t = xt −µi.

x̂t+1 = (Ar−BrCi)x̂t +wt .

If this system is stable, it will converge to the state x̂t = 0
which is xt = µi as t→∞. However, since this is a finite time
problem, we model a stopping condition, namely, the system
is close enough to 0. For some zα (e.g., in 1 dimension 95%
quantiles are Z5% = 1.96):

x̂T
t Σ
−1
i x̂t ≤ zα .

If the robot’s trajectory was modeled as a sequence 1...k
of such controllers, we would observe the that the set of
transition states Γ would be described as a mixture model
around each of the targets [µ1, ...,µk]. The GMM is a
tractable mixture model that approximates this distribution.

Transition State Clustering Algorithm
In this section, we describe the hierarchical clustering

process of TSC. TSC is two-phase algorithm that first
identifies transitions states, defined as consecutive time-
steps assigned to different segments, and then, clusters
spatially and temporally similar transition states across
demonstrations with a non-parametric mixture model under
the assumption that each demonstration follows the same
partial order of transitions up-to noise and loops. The
algorithm is summarized in Algorithm 1.

Non-Parametric Mixture Models
Hyper-parameter selection is a known problem in mixture

models. Recent results in Bayesian statistics can mitigate
some of these problems by defining a soft prior of the number
of mixtures. Consider the process of drawing samples from
a Gaussian Mixture Models (GMM). We first sample some
c from a categorical distribution, one that takes on values
from (1...k), with probabilities φ , where φ is a K dimensional
simplex:

c∼ cat(k,φ)

Then, conditioned on the event {c = i}, we sample from a
multivariate Gaussian distribution:

xi ∼ N(µi,Σi)

We can see that sampling a GMM is a two-stage process
of first sampling from the categorical distribution and then
conditioning on that sample.

Prepared using sagej.cls

6 The International Journal of Robotics Research XX(X)

Algorithm 1: The Transition State Clustering Algorithm

1: Input: D demonstrations, ` a window size, ρ pruning
parameter, δ compaction parameter, and α a Dirichlet
Process concentration prior.

2: n(`)
t = [xt−`, ...,xt]

ᵀ.
3: Fit a mixture model to nt using DP-GMM assigning

each state to its most likely component.
4: Transition states are when nt has a different most likely

mixture component than nt+1.
5: Fit a mixture model to the set of transition states in the

state-space using DP-GMM.
6: Conditioned on each possible state-space mixture

component, apply DP-GMM to the set of times.
7: Assign every time step to its most likely mixture

component, prune mixture components that do not have
at least 1 observation from a fraction ρ demonstrations.

8: Merge together transitions that are within δ L2 distance
after Dynamic Time Warping.

9: Output: A set of transitions, which are regions of the
state-space and temporal intervals defined by Gaussian
sub-level sets.

The key insight of Bayesian non-parametrics is to add
another level (or multiple levels) to this model. The
Dirichlet Process (DP) defines a distribution over discrete
distributions; in other words, a categorical distribution with
certain probabilities and setting of k itself is a sample from
a DP (Kulis and Jordan 2012). To sample from the Dirichlet
Process-GMM model, one must first sample from the DP,
then sample from the categorical distribution, and finally
sample from the Gaussian:

(K,φ)∼ DP(H,α) c∼ cat(K,φ) x∼ N(µi,Σi)

The parameters of this model can be solved with variational
Expectation Maximization. We denote this entire clustering
method in the remainder of this work as DP-GMM. DP-
GMM is applied in multiple steps of the TSC algorithm
including both transition identification and state clustering.

Transition States Identification
The first step is to identify a set of transition states for each

demonstration in D. Suppose there was only one regime, then
this would be a linear regression problem:

argmin
A
‖AXt −Xt+1‖

where Xt = [x1, . . . ,xT] ∈ Rp×T with each column as the
state at time t: xt ∈ Rp. Generalizing to multiple regimes,
Moldovan et al. (2015) showed that fitting a jointly Gaussian
model to nt =

(xt+1
xt

)
is equivalent to Bayesian Linear

Regression, and a number of others have applied similar
techniques (Khansari-Zadeh and Billard 2011; Kruger et al.
2010). This general logic defines a family of estimators,
where we can define n(`)

t as:

n(`)
t = [xt−`, ...,xt]

ᵀ

In our experiments, unless otherwise noted, we use `= 1.
Therefore, to fit a switched linear dynamical system

model, we can fit a DP-GMM model to nt . Each nt is

assigned to a most likely mixture component (i.e., cluster).
To find transition states, we move along a trajectory from
t = 1, ..., t f , and find states at which nt has a different
most likely mixture component than nt+1. These points mark
transitions. The result is a set Γ of transition states across all
demonstrations.

Linearization with GMMs Using a GMM (and by
extension a DP-GMM) to detect switches in local linearity
is an approximate algorithm that has been applied in several
prior works Moldovan et al. (2015); Calinon et al. (2014);
Khansari-Zadeh and Billard (2011).

Consider the following dynamical system:

xt+1 = ξ (xt)+wt

where wt is unit-variance i.i.d Gaussian noise N(0, I). Let us
first focus on linear systems. If ξ is linear, then the problem
of learning ξ reduces to linear regression:

argmin
A

T−1

∑
t=1
‖Axt −xt+1‖.

Alternatively, we can think about this linear regression
probabilistically. Let us first consider the following
proposition:

Proposition 1. Consider the one-step dynamics of a linear
system. Let xt ∼ N(µ,Σ), then

(xt
xt+1

)
is a multivariate

Gaussian.

Following from this idea, if we let p define a distribution
over xt+1 and xt :

p(xt+1,xt)∼ N(µ,Σ)

For multivariate Gaussians the conditional expectation is a
linear estimate, and we can see that it is equivalent to the
regression above:

argmin
A

T−1

∑
t=1
‖Axt −xt+1‖= E[xt+1 | xt].

The GMM model allows us to extend this line of reasoning
to consider more complicated ξ . If ξ is non-linear p will
almost certainly not be Gaussian. However, GMM models
can model complex distributions in terms of Gaussian
Mixture Components:

p(xt+1,xt)∼ GMM(k)

where k denotes the number of mixture components. The
interesting part about this mixture distribution is that locally,
it models the dynamics as before. Conditioned on particular
Gaussian component i the conditional expectation is:

E[xt+1 | xt , i ∈ 1...k].

As before, conditional expectations of Gaussian random
variables are linear, with some additional weighting φ(i |
xt ,xt+1):

argmin
Ai

T−1

∑
t=1

φ(i | xt ,xt+1) · ‖Aixt −xt+1‖.

Prepared using sagej.cls

Krishnan, Garg et al. 7

Every tuple (xt+1,xt) probability φ(i | xt ,xt+1) of belonging
to each ith component, and this can be thought of as a
likelihood of belonging to a given locally linear model.

As we mentioned earlier, there are multiple techniques
for the transition identification problem. We highlight the
alternatives in the appendix.

Learning The Transition State Distribution
Now, we learn the parameters for the time-varying

transition state distribution.

DP-GMM in State-Space: First, we fit a DP-GMM to the
spatial distribution of transition states. There are numerous
transition states at different locations in the state-space. If
we model the states at transition states as drawn from a DP-
GMM model:

xt ∼ GMM(π,{µ1, ...,µk},{Σ1, ...,Σk})

Then, we can apply the DP-GMM again to group the state
vectors at the transition states. After fitting the GMM, each
x ∈X will have a ẑ ∈ {0,1, ...,k} associated with it, which
is the most likely mixture component from which it is
generated.

DP-GMM in Time: Using this ẑ, we apply the second level
of DP-GMM fitting over the time axis. Without temporal
localization, the transitions may be ambiguous. For example,
in circle cutting, the robot may pass over a point twice
in the same task. Conditioned on ẑ = i, we model the
times which change points occur as drawn from a GMM
t ∼ GMM(π,{µ1, ...,µli},{Σ1, ...,Σli}), and then we can
apply DP-GMM to the set of times. Intuitively, this can
be viewed as a hierarchical clustering process that groups
together events that happen at similar times during the
demonstrations. The result is a distribution that models
spatially and temporally similar transitions.

Interpreting the Distribution: The above model defines a
mixture distribution with m = ∑

k
i=0 li components, where k

is the number of state-space components, and conditioned
on each state-space component i there are li time-axis
components. If there are m total mixture components for the
distribution {C1, ...,Cm}. Each mixture component defines
a Gaussian over the state-space and a distribution that is
conditionally Gaussian over time. The quantiles of each
component distribution will define an ordered sequence of
regions [ρ1, ...,ρk] over the state-space (i.e., its sublevel set
of the state-space Gaussian bounded by zα and ordered by
mean the time Gaussian).

Outlier Rejection and Loop Compaction
Next, we describe our approach to make the model

resilient to noise in the form of spurious actions and loops.

Transition State Pruning: We consider the problem
of outlier transitions, ones that appear only in a few
demonstrations. Each transition state will have a most likely
mixture component ẑ ∈ {1, ...,m}. Mixture components
whose constituent transition states come from fewer than a
fraction ρ demonstrations are pruned. ρ should be set based
on the expected rarity of outliers. For example, if ρ is 100%
then the only mixture components that are found are those

with at least one transition state from every demonstration
(i.e., the regularity assumption). If ρ is less than 100%, then
it means that every mixture component must cover some
subset of the demonstrations. In our experiments, we set the
parameter ρ to 80% and show the results with and without
this step.

Transition State Compaction: Once we have applied
pruning, the next step is to remove transition states that
correspond to looping actions, which are prevalent in surgical
demonstrations. We model this behavior as consecutive
transition states that have the same state-space GMM
mixture component. We apply this step after pruning to
take advantage of the removal of outlier mixtures during the
looping process.

The key question is how to differentiate between
repetitions that are part of the demonstration and ones that
correspond to looping actions–the sequence might contain
repetitions not due to looping. As a heuristic, we threshold
the L2 distance between consecutive segments with repeated
transitions. If the L2 distance is low, we know that the
consecutive segments are happening in a similar location as
well. In our datasets, this is a good indication of looping
behavior.

For each demonstration, we define a segment s(j)[t]
of states between each transition states. The challenge
is that s(j)[t] and s(j+1)[t] may have a different number
of observations and may be at different time scales. To
address this challenge, we apply Dynamic Time Warping
(DTW). Since segments are locally similar up-to small time
variations, DTW can find a most-likely time alignment of the
two segments.

Let s(j+1)[t∗] be a time aligned (w.r.t to s(j)) version
of s(j+1). Then, after alignment, we define the L2 metric
between the two segments:

d(j, j+1) =
1
T

T

∑
t=0

(s(j)[i]− s(j+1)[i∗])2

When d ≤ δ , we compact two consecutive segments.
δ is chosen empirically and a larger δ leads to a
sparser distribution of transition states, and smaller δ

leads to more transition states. For our needle passing
and suturing experiments, we set δ to correspond to the
distance between two suture/needle insertion points–thus,
differentiating between repetitions at the same point vs. at
others. However, since we are removing points from a time-
series, this requires us to adjust the time scale. Thus, from
every following observation, we shift the time stamp back by
the length of the compacted segments.

Results
We present the results evaluating TSC on a synthetic

dataset and three real data sets of kinematic and visual
recordings of surgical training tasks on the dVRK.

Synthetic Example
One of the challenges in evaluating segmentation

techniques on real datasets is that the ground truth is often
not known. Comparing different segmentation models can
be challenging due to differing segmentation criteria. We

Prepared using sagej.cls

8 The International Journal of Robotics Research XX(X)

Figure 3. One of 20 instances with random goal points G1, G2, G3. (a) Observations from a simulated demonstration with three
regimes, (b) Observations corrupted with Gaussian white sensor noise, (c) Observations corrupted with low frequency process
noise, and (d) Observations corrupted with an inserted loop. See Figure 8 for evaluation on loops.

Figure 4. (a) Nominal trajectory, (b) 1 std. of high frequency observation noise, (c) 2 std. of high frequency observation noise, (d) 1
std. of low frequency process noise, and (e) 2 std. of low frequency process noise.

developed a synthetic dataset generator for segmentation and
compared several algorithms on the generated dataset. Note,
we do not intend this to be a comprehensive evaluation
of the accuracy of the different techniques, but more
a characterization of the approaches on a locally linear
example to study the key tradeoffs. The primary purpose of
our experiment is to evaluate the following hypothesis: TSC
more accurately recovers the ground truth when the data is
corrupted with observation noise and model noise.

Overview We model the motion of a holonomic point robot
with two-dimensional position state (x,y) between k goal
points {g1, ...,gk}. We apply position control to guide the
robot to the targets and without disturbance this motion is
linear (Figure 3a). We add various types of disturbances (and
in varying amounts) including Gaussian observation noise,
low-frequency process noise, and repetitive loops (Figure 3b-
d). We report noise values in terms of standard deviations.
Figure 4 illustrates the relative magnitudes. A demonstration
di is a sample from the following system.

Task: Every segmentation algorithm will be evaluated in its
ability to identify the k−1 segments (i.e., the paths between
the goal points). Furthermore, we evaluate algorithms on
random instances of this task. In the beginning, we select 3
random goal points. From a fixed initial position, we control
the point robot to the points with position control. Without
any disturbance this follows a linear motion. For a given
noise setting, we sample demonstrations from this system,
and apply/evaluate each algorithm. We present results
aggregated over 20 such random instances. This is important
since many of the segmentation algorithms proposed in
literature have some crucial hyper-parameters, and we
present results with a single choice of parameters averaged
over multiple tasks. This way, the hyper-parameter tuning
cannot overfit to any given instance of the problem and has

to be valid for the entire class of tasks. We believe that this
is important since tuning these hyper-parameters in practice
(i.e., not in simulation) is challenging since there is no
ground truth. The experimental code is available at: http:
//berkeleyautomation.github.io/tsc/.

5 Algorithms: We compare TSC against alternatives where
the authors explicitly find (or approximately find) locally
linear segments. It is important to reiterate that different
segmentation techniques optimize different objectives, and
this benchmark is meant to characterize the performance on
a common task.

1. (GMM) We compare to a version of the approach
proposed by Lee et al. (2015). In this technique,
we apply a GMM to a vector of states augmented
with the current time. The authors cite Ghahramani
and Jordan (1993) to argue that this is a form of
local linear regression. In Lee et al. (2015), the
authors use Bayesian Information Criterion (BIC)
to optimize the hyper-parameter of the number of
mixture components. In our experiments, we set the
parameter to the optimal choice of 3 without automatic
tuning.

2. (GMM+HMM) A natural extension to this model is
to enforce a transition structure on the regimes with
a latent Markov Chain (Asfour et al. 2008; Calinon
and Billard 2004; Kruger et al. 2010; Vakanski et al.
2012). We use the same state vector as above, without
time augmentation as this is handled by the HMM. We
fit the model using the forward-backward (or Baum-
Welsch) algorithm.

3. Coresets We evaluate against a standard coreset
model (Sung et al. 2012; Volkov et al. 2015), and

Prepared using sagej.cls

http://berkeleyautomation.github.io/tsc/
http://berkeleyautomation.github.io/tsc/

Krishnan, Garg et al. 9

Figure 5. Each data point represents 20 random instances of a 3-segment problem with varying levels of high-frequency noise,
low-frequency noise, and demonstrations. We measure the segmentation accuracy for the compared approaches. (A) TSC finds
more a accurate segmentation than all of the alternatives even under significant high-frequency observation noise, (B) TSC is more
robust low-frequency process noise than the alternatives, (C) the Bayesian techniques solved with MCMC (ARHMM, HSMM) are
more sensitive to the number of demonstrations provided than the others.

the particular variant is implemented with weighted k-
means. We applied this to the same augmented state-
vector as in the previously mentioned GMM.

4. HSMM We evaluated a Gaussian Hidden Semi-
Markov Model as used in Niekum et al. (2012).
We directly applied this model to the demonstrations
with no augmentation or normalization of features.
This was implemented with the package pyhsmm. We
directly applied this model to the demonstrations with
no augmentation as in the GMM approaches.

5. AR-HMM We evaluated a Bayesian Autoregressive
HMM model as used in Niekum et al. (2012). This
was implemented with the packages pybasicbayes
and pyhsmm-ar.

Evaluation Metric: There is considerable debate on metrics
to evaluate the accuracy of unsupervised segmentation and
activity recognition techniques, e.g. frame accuracy (Wu
et al. 2015), hamming distance (Fox et al. 2009). Typically,
these metrics have two steps: (1) segments to ground
truth correspondence, and (2) then measuring the similarity
between corresponded segments. We have made this feature
extensible and evaluated some different accuracy metrics
(Jaccard Similarity, Frame Accuracy, Segment Accuracy,
Intersection over Union). We found that the following
procedure led to the most insightful results–differentiating
the different techniques.

In the first phase, we match segments in our predicted
sequence to those in the ground truth. We do this with a
procedure identical to the one proposed in Wu et al. (2015).
We define a bi-partite graph of predicted segments to ground
truth segments, and add weighted edges where weights
represent the overlap between a predicted segment and a
ground truth segment (i.e, the recall over time-steps). Each
predicted segment is matched to its highest weighted ground
truth segment. Each predicted segment is assigned to exactly
one ground-truth segment, while a ground-truth segments
may have none, one, or more corresponding predictions.

After establishing the correspondence between predictions
and ground truth, we consider a true positive (a ground-truth
segment is correctly identified) if the overlap (intersection-
over-union) between the ground-truth segment and its

Figure 6. TSC is about 6x slower than using Coresets or the
direct GMM approach, but it is over 100x faster than the MCMC
for the ARHMM model.

corresponding predicted segments is more than a default
threshold 60%. Then, we compute Segment Accuracy as
the ratio of the ground-truth segments that are correctly
detected. In Wu et al. (2015), the authors use a 40% threshold
but apply the metric to real data. Since this is a synthetic
example, we increase this threshold to 60%, which we
empirically found accounted for boundary effects especially
in the Bayesian approaches (i.e., repeated transitions around
segment endpoints).

Accuracy v.s. Noise In our first experiment, we measured
the segment accuracy for each of the algorithms. We also
varied the amount of process and observation noise in the
system. As Figure 4 illustrates, this is a very significant
amount of noise in the data and successful techniques must
exploit the structure in multiple demonstrations. Figure 5a
illustrates the performance of each of the techniques as
a function of high-frequency observation noise. Results
suggest that TSC is more robust to noise than the alternatives
(nearly 20% more accurate for 2.5 std of noise). The
Bayesian ARHMM approach is nearly identical to TSC
when the noise is low but quickly loses accuracy as more
noise is added. We attribute this robustness to the TSC’s
pruning step which ensures that only transition state clusters
with sufficient coverage over all demonstrations are kept.
These results are even more pronounced for low-frequency
process noise (Figure 5b). TSC is 49% more accurate than
all competitors for 2.5 std of noise added. We find that
the Bayesian approaches are particularly susceptible to such

Prepared using sagej.cls

10 The International Journal of Robotics Research XX(X)

Figure 7. (A) illustrates a nominal trajectory of two linear dynamical motions. (B) TSC more accurately recovers the two segment
ground truth than the alternatives under observation noise, (C) all of the techniques suffer in accuracy under process noise.

Figure 8. (A) shows the performance curves of different
choices of windows as a function of the process noise. Larger
windows can reject higher amounts of process noise but are
less efficient at low noise levels. (B) the performance curves of
different choices of the pruning threshold. Larger pruning
thresholds are more robust to high amounts of observation
noise but less accurate in the low noise setting. We selected
(w = 3,ρ = 0.3) in our synthetic experiments.

noise. Furthermore, Figure 5c shows requires no more data
than the alternatives to achieve such robustness.

Another point to note is that TSC is solved much more
efficiently than ARHMM or HSMM which require expensive
MCMC samples. While parameter inference on these models
can be solved more efficiently (but approximately) with
Mean-Field Stochastic Variational Inference, we found that
the results were not as accurate. TSC is about 6x slower
than using Coresets or the direct GMM approach, but it is
over 100x faster than the MCMC for the ARHMM model.
Figure 6 compares the runtime of each of the algorithms as a
function of the number of demonstrations.

TSC Hyper-Parameters Next, we explored the dependence
of the performance on the hyper-parameters for TSC. We
focus on the window size and the pruning parameter.
Figure 8a shows how varying the window size affects the
performance curves. Larger window sizes can reject more
low-frequency process noise. However, larger windows are
also less efficient when the noise is low. Similarly, Figure
8b shows how increasing the pruning parameter affects the
robustness to high-frequency observation noise. However, a
larger pruning parameter is less efficient at low noise levels.
Based on these curves, we selected (w = 3,ρ = 0.3) in our
synthetic experiments.

Loops Finally, we evaluated 4 algorithms on how well
they can detect and adjust for loops. TSC compacts
adjacent motions that are overly similar, while HMM-based
approaches correspond similar looking motions. An HMM
grammar over segments is clearly more expressive than
TSC’s, and we explore whether it is necessary to learn a
full transition structure to compensate for loops. We compare
the accuracy of the different segmentation techniques in

detecting that a loop is present (Figure 9). Figure 9a shows
that TSC is competitive with the HMM approaches as we
vary the observation noise; however, the results suggest that
ARHMM provides the most accurate loop detection. On
the hand, Figure 9b suggests that process noise has a very
different effect. TSC is actually more accurate than the HMM

Figure 9. (A) illustrates the accuracy of TSC’s compaction step
as a function of observation noise. TSC is competitive with the
HMM-based approaches without having to model the full
transition matrix. (B) TSC is actually more robust to
low-frequency process noise in the loops than the HMM-based
approaches.

approaches when the process noise is high–even without
learning a transition structure. This is an interesting property
that we find is very useful in our experiments on real surgical
data.

Dynamical Trajectories It is important to differentiate linear
dynamical motions from linear trajectories. TSC models
trajectories as linear dynamical systems and this allows for
circular and spiral trajectories. Next, we evaluate TSC on
an example with two linear dynamical systems. One system
represents a straight line trajectory which transitions into
a circular motion. Figure 7 illustrates the results. We find
that this problem is substantially harder than the previous
problem and all of the algorithms show reduced accuracy.
TSC is still the most accurate.

Surgical Data Experiments
We describe the three tasks used in our evaluation and

the corresponding manual segmentation (Figure 10). This
will serve as ground truth when qualitatively evaluating
our segmentation on real data. This set of experiments
primarily evaluates the utility of segments learned by TSC.
Our hypothesis is that even though TSC is unsupervised, it
identifies segments that often align with manual annotations.
In all of our experiments, the pruning parameter ρ is set to
80% and the compaction heuristic δ is to 1cm.

Prepared using sagej.cls

Krishnan, Garg et al. 11

(a) Circle Cutting

1. Start

2. Notch

3. 1/2 cut

4. Re-enter

6. Finish

5. 1/2 Cut

(b) Needle Passing

1.Start

2.Pass 1

3. Hando!

4. Pass 2

5. Hando!

6. Pass 3

7. Hando!

8. Pass 4

1. Insert

2. Pull

3.Hando! 4. Insert

5. Pull

6.Hando! 7. Insert

10. Insert

8. Pull

9.Hando!

11. Pull

(c) Suturing

Figure 10. Hand annotations of the three tasks: (a) circle cutting, (b) needle passing, and (c) suturing. Right arm actions are listed
in dark blue and left arm actions are listed in yellow.

Circle Cutting: A 5 cm diameter circle drawn on a piece
of gauze. The first step is to cut a notch into the circle.
The second step is to cut clockwise half-way around the
circle. Next, the robot transitions to the other side cutting
counter clockwise. Finally, the robot finishes the cut at the
meeting point of the two cuts. As the left arm’s only action
is to maintain the gauze in tension, we exclude it from
the analysis. In Figure 10a, we mark 6 manually identified
transitions points for this task from Murali et al. (2015): (1)
start, (2) notch, (3) finish 1st cut, (4) cross-over, (5) finish
2nd cut, and (6) connect the two cuts. For the circle cutting
task, we collected 10 demonstrations by non-experts familiar
with operating the da Vinci Research Kit (dVRK).

We also perform experiments using the JIGSAWS
dataset Gao et al. (2014) consisting of surgical activity for
human motion modeling. The dataset was captured using the
da Vinci Surgical System from eight surgeons with different
levels of skill performing five repetitions each of Needle
Passing and Suturing.

Needle Passing: We applied TSC to 28 demonstrations of
the needle passing task. The robot passes a needle through a
hoop using its right arm, then its left arm to pull the needle
through the hoop. Then, the robot hands the needle off from
the left arm to the right arm. This is repeated four times as
illustrated with a manual segmentation in Figure 10b.

Suturing: Next, we explored 39 examples of a 4 throw
suturing task (Figure 10c). Using the right arm, the first step
is to penetrate one of the points on right side. The next step
is to force the needle through the phantom to the other side.
Using the left arm, the robot pulls the needle out of the
phantom, and then hands it off to the right arm for the next
point.

Visual Features
TSC is compatible with visual features in addition to

kinematic states. Our goal with these features was to
illustrate that TSC applies to general state-spaces as well
as spatial ones, and not to address the general perception
problem. These features were constructed via manual
annotation, where the Grasp and Needle Penetration were
identified by reviewing the videos and marking the frames
at which they occurred (Section).

We evaluate TSC in this featurized state space that
incorporates states derived from vision. We illustrate the
transition states in Figure 13 with and without visual
features on the circle cutting task. At each point where the
model transitions, we mark the end-effector (x,y,z) location

(ignoring the orientation). In particular, we show a region
(red box) to highlight the benefits of these features. During
the cross-over phase of the task, the robot has to re-enter the
notch point and adjust to cut the other half of the circle. When
only using the end-effector kinematic pose, the locations
where this transition happens is unreliable as operators may
approach the entry from slightly different angles. On the
other hand, the use of a gripper contact binary feature clusters
the transition states around the point at which the gripper is in
position and ready to begin cutting again. In the subsequent
experiments, we use the same two visual features.

Pruning and Compaction In Figure 14, we highlight the
benefit of pruning and compaction using the Suturing task
as exemplar. First, we show the transition states without
applying the compaction step to remove looping transition
states (Figure 14a). We find that there are many more
transition states at the “insert” step of the task. Compaction
removes the segments that correspond to a loop of the
insertions. Next, we show the all of the clusters found by DP-
GMM. The centroids of these clusters are marked in Figure
14b. Many of these clusters are small containing only a few
transition states. This is why we created the heuristic to prune
clusters that do not have transition states from at least 80%
of the demonstrations. In all, 11 clusters are pruned by this
rule.

Results with Surgical Data
Circle Cutting: Figure 15a shows the transition states
obtained from our algorithm. And Figure 15b shows the TSC
clusters learned (numbered by time interval midpoint). The
algorithm found 8 clusters, one of which was pruned using
our ρ = 80% threshold rule.

The remaining 7 clusters correspond well to the manually
identified transition points. It is worth noting that there is
one extra cluster (marked 2′), that does not correspond to
a transition in the manual segmentation. At 2′, the operator
finishes a notch and begins to cut. While at a logical
level notching and cutting are both penetration actions, they
correspond to two different linear transition regimes due
to the positioning of the end-effector. Thus, TSC separates
them into different clusters even though a human annotators
did not. This illustrates why supervised segmentation is
challenging. Human annotators segment trajectories on
boundaries that are hard to characterize mathematically, e.g.,
is frame 34 or frame 37 the segment boundary. Supervisors
may miss crucial motions that are useful for automation or
learning.

Prepared using sagej.cls

12 The International Journal of Robotics Research XX(X)

−0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08
(a) Transition States

X (m)

Y
 (

m
)

−0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

X (m)

Y
 (

m
)

(b) TS Clusters “Left”

−0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

X (m)

Y
 (

m
)

(c) TS Clusters “Right”

1

2

3

4

5

1

2

4

3

5

Figure 11. (a) The transition states for the task are marked in orange (left arm) and blue (right arm). (b-c) The TSC clusters, which
are clusters of the transition states, are illustrated with their 75% confidence ellipsoid for both arms

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

(a) Transition States

X (m)

Y
 (

m
)

0.02 0.04 0.06 0.08 0.1

0.02

0.04

0.06

X (m)

Y
 (

m
)

(b) TS Clusters “Left”

0.02 0.04 0.06 0.08 0.1

0.02

0.04

0.06

X (m)

Y
 (

m
)

(c) TS Clusters “Right”

1

2
3

4

5

7

6

1

2

3

4

5

6

Figure 12. (a) The transition states for the task are marked in orange (left arm) and blue (right arm). (b-c) The clusters, which are
clusters of the transition states, are illustrated with their 75% confidence ellipsoid for both arms

0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

X (m)

Y
 (

m
)

(b) Transition States With Features

0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

X (m)

Y
 (

m
)

(a) Transition States Without Features

Figure 13. (a) We show the transition states without visual
features, (b) and with visual features. Marked in the red box is a
set of transitions that cannot always be detected from
kinematics alone.

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

Suturing Change Points: No Compaction

X (m)

Y
 (

m
)

0 0.02 0.04 0.06 0.08 0.1
0

0.02

0.04

0.06

Suturing Milestones No Pruning

X (m)

Y
 (

m
)

Figure 14. We first show the transition states without
compaction (in black and green), and then show the clusters
without pruning (in red). Compaction sparsifies the transition
states and pruning significantly reduces the number of clusters.

Needle Passing: In Figure 11a, we plot the transition states
in (x,y,z) end-effector space for both arms. We find that these
transition states correspond well to the logical segments
of the task (Figure 10b). These demonstrations are noisier
than the circle cutting demonstrations and there are more
outliers. The subsequent clustering finds 9 (2 pruned). Next,
Figures 11b-c illustrate the TSC clusters. We find that again
TSC learns a small parametrization for the task structure
with the clusters corresponding well to the manual segments.
However, in this case, the noise does lead to a spurious
cluster (4 marked in green). One possible explanation is

0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

X (m)

Y
 (

m
)

(a) Transition States

0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

X (m)

Y
 (

m
)

(b) Transition State Clusters

1

2

2’ 3

4 5

6

Figure 15. (a) The transition states for the circle cutting task
are marked in black. (b) The TSC clusters, which are clusters of
the transition states, are illustrated with their 75% confidence
ellipsoid.

that the demonstrations contain many adjustments to avoid
colliding with the needle hoop and the other arm while
passing the needle through leading to numerous transition
states in that location.

Suturing: In Figure 12, we show the transition states and
clusters for the suturing task. As before, we mark the left arm
in orange and the right arm in blue. This task was far more
challenging than the previous tasks as the demonstrations
were inconsistent. These inconsistencies were in the way the
suture is pulled after insertion (some pull to the left, some to
the right, etc.), leading to transition states all over the state
space. Furthermore, there were numerous demonstrations
with looping behaviors for the left arm. In fact, the DP-
GMM method gives us 23 clusters, 11 of which represent
less than 80% of the demonstrations and thus are pruned (we
illustrate the effect of the pruning in the next section). In the
early stages of the task, the clusters clearly correspond to the
manually segmented transitions. As the task progresses, we
see that some of the later clusters do not.

Comparison to Surgemes
Surgical demonstrations have an established set of

primitives called surgemes, and we evaluate if segments

Prepared using sagej.cls

Krishnan, Garg et al. 13

Table 1. This table compares transitions learned by TSC and transitions identified by manual annotators in the JIGSAWS dataset.
We found that the transitions mostly aligned. 83% and 73% of transition clusters for needle passing and suturing respectively
contained exactly one surgeme transition. These results suggest that TSC aligns with surgemes without any explicit supervision.

No. of Surgeme Segments No. of Segments + C/P No. of TSC TSC-Surgeme Surgeme-TSC
Needle Passing 19.3±3.2 14.4±2.57 11 83% 74%

Suturing 20.3±3.5 15.9±3.11 13 73% 66%

discovered by our approach correspond to surgemes. In Table
1, we compare the number of TSC segments for needle
passing and suturing to the number of annotated surgeme
segments. A key difference between our segmentation and
number of annotated surgemes is our compaction and
pruning steps. To account for this, we first select a set of
surgemes that are expressed in most demonstrations (i.e.,
simulating pruning), and we also apply a compaction step to
the surgeme segments. When surgemes appear consecutively,
we only keep the one instance of each. We explore two
metrics: TSC-Surgeme the fraction of TSC clusters with
only one surgeme switch (averaged over all demonstrations),
and Surgeme-TSC the fraction of surgeme switches that fall
inside exactly one TSC cluster. We found that the transitions
learned by TSC often aligned with the surgemes. 83% and
73% of transition clusters for needle passing and suturing
respectively contained exactly one surgeme transition (TSC-
Surgeme metric). These results suggest that TSC aligns with
surgemes without any explicit supervision.

Future Work
These results suggest several avenues for future work.

First, we will explore using Convolutional Neural Networks
to automatically extract visual features for segmentation.
This will alleviate a key challenge in applying TSC to new
datasets. We will also explore how other results in Deep
Learning such as Autoencoders and Recurrent Networks can
be used to segment data without linearity assumptions. We
are also interested in exploring the connections between TSC
and other time-series models such as Derivative Dynamic
Time Warping which aligns the derivative of two signals.
Segmentation is the first step in a broader robot learning
pipeline, and we are actively exploring using segmentation
to construct rewards for Reinforcement Learning.

Conclusion
We presented Transition State Clustering (TSC), which

leverages the consistent structure of repeated demonstrations
robustly learn segmentation criteria. To learn these clusters,
TSC uses a hierarchical Dirichlet Process Gaussian Mixture
Model (DP-GMM) with a series of merging and pruning
steps. Our results on a synthetic example suggest that
this approach is more robust than 5 other segmentation
algorithms. We further applied our algorithm to three
surgical datasets and found that the transition state clusters
correspond well to manual annotations and transitions with
respect to motions from a pre-defined surgical motion
dictionary (surgemes).

Acknowledgements

This research was supported in part by a seed grant from the
UC Berkeley Center for Information Technology in the Interest
of Society (CITRIS), the UC Berkeley AMPLab, and by the

U.S. National Science Foundation under Award IIS-1227536:
Multilateral Manipulation by Human-Robot Collaborative Systems.
This work has been supported in part by funding from Google and
and Cisco. We also thank Florian Pokorny, Jeff Mahler, and Michael
Laskey for feedback and discussions.

References

Tamim Asfour, Pedram Azad, Florian Gyarfas, and Rüdiger
Dillmann. Imitation learning of dual-arm manipulation tasks
in humanoid robots. I. J. Humanoid Robotics, 5(2):183–202,
2008.

Sylvain Calinon and Aude Billard. Stochastic gesture production
and recognition model for a humanoid robot. In 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Sendai, Japan, September 28 - October 2, 2004, pages 2769–
2774, 2004.

Sylvain Calinon, Florent D’halluin, Eric L Sauser, Darwin G
Caldwell, and Aude G Billard. Learning and reproduction of
gestures by imitation. Robotics & Automation Magazine, IEEE,
17(2):44–54, 2010.

Sylvain Calinon, Danilo Bruno, and Darwin G Caldwell. A task-
parameterized probabilistic model with minimal intervention
control. In Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 3339–3344, 2014.

Emily Fox, Michael I Jordan, Erik B Sudderth, and Alan S
Willsky. Sharing features among dynamical systems with beta
processes. In Advances in Neural Information Processing
Systems, pages 549–557, 2009.

Yixin Gao, S Swaroop Vedula, Carol E Reiley, Narges Ahmidi,
Balakrishnan Varadarajan, Henry C Lin, Lingling Tao, Luca
Zappella, Benjamın Béjar, David D Yuh, Chi Chen, Rene Vidal,
Sanjeev Khudanpur, and Greg D. Hager. The jhu-isi gesture
and skill assessment dataset (jigsaws): A surgical activity
working set for human motion modeling. In Medical Image
Computing and Computer-Assisted Intervention (MICCAI),
2014.

Zoubin Ghahramani and Michael I. Jordan. Supervised learning
from incomplete data via an EM approach. In Advances
in Neural Information Processing Systems 6, [7th NIPS
Conference, Denver, Colorado, USA, 1993], pages 120–127,
1993.

Daniel H Grollman and Odest Chadwicke Jenkins. Incremental
learning of subtasks from unsegmented demonstration. In
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pages 261–266. IEEE, 2010.

Ben Kehoe, Gregory Kahn, Jeffrey Mahler, Jonathan Kim, Alex X.
Lee, Anna Lee, Keisuke Nakagawa, Sachin Patil, W. Douglas
Boyd, Pieter Abbeel, and Kenneth Y. Goldberg. Autonomous
multilateral debridement with the raven surgical robot. In 2014
IEEE International Conference on Robotics and Automation,
ICRA 2014, Hong Kong, China, May 31 - June 7, 2014, pages
1432–1439, 2014.

Prepared using sagej.cls

14 The International Journal of Robotics Research XX(X)

Mohammad Khansari-Zadeh and Aude Billard. Learning stable
nonlinear dynamical systems with gaussian mixture models.
Robotics, IEEE Transactions on, 27(5):943–957, 2011.

Sanjay Krishnan, Animesh Garg, Sachin Patil, Colin Lea, Gregory
Hager, Pieter Abbeel, and Ken Goldberg. Transition state
clustering: Unsupervised surgical trajectory segmentation for
robot learning. In International Symposium of Robotics
Research. Springer STAR, 2015.

Volker Kruger, Dennis Herzog, Sanmohan Baby, Ales Ude, and
Danica Kragic. Learning actions from observations. Robotics
& Automation Magazine, IEEE, 17(2):30–43, 2010.

Volker Krüger, Vadim Tikhanoff, Lorenzo Natale, and Giulio
Sandini. Imitation learning of non-linear point-to-point robot
motions using dirichlet processes. In IEEE International
Conference on Robotics and Automation, ICRA 2012, 14-18
May, 2012, St. Paul, Minnesota, USA, pages 2029–2034, 2012.

Volker Krüger, Vadim Tikhanoff, Lorenzo Natale, and Giulio
Sandini. Imitation learning of non-linear point-to-point robot
motions using dirichlet processes. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 2029–
2034. IEEE, 2012.

Dana Kulić and Yoshihiko Nakamura. Scaffolding on-line
segmentation of full body human motion patterns. In Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 2860–2866. IEEE, 2008.

Brian Kulis and Michael I. Jordan. Revisiting k-means: New
algorithms via bayesian nonparametrics. In Proceedings of
the 29th International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

Colin Lea, Gregory D. Hager, and Renè Vidal. An improved model
for segmentation and recognition of fine-grained activities with
application to surgical training tasks. In WACV, 2015.

Sang Hyoung Lee, Il Hong Suh, Sylvain Calinon, and Rolf
Johansson. Autonomous framework for segmenting robot
trajectories of manipulation task. Autonomous Robots, 38(2):
107–141, 2015.

Henry C. Lin, Izhak Shafran, Todd E. Murphy, Allison M. Oka-
mura, David D. Yuh, and Gregory D. Hager. Automatic
detection and segmentation of robot-assisted surgical motions.
In Medical Image Computing and Computer-Assisted Inter-
vention - MICCAI 2005, 8th International Conference, Palm
Springs, CA, USA, October 26-29, 2005, Proceedings, Part I,
pages 802–810, 2005.

Jeffrey Mahler, Sanjay Krishnan, Michael Laskey, Siddarth Sen,
Adithyavairavan Murali, Ben Kehoe, Sachin Patil, Jiannan
Wang, Mike Franklin, Pieter Abbeel, and Kenneth Y. Goldberg.
Learning accurate kinematic control of cable-driven surgical
robots using data cleaning and gaussian process regression. In
2014 IEEE International Conference on Automation Science
and Engineering, CASE 2014, New Taipei, Taiwan, August 18-
22, 2014, pages 532–539, 2014.

San Mohan, Volker Krüger, Danica Kragic, and Hedvig Kjellström.
Primitive-based action representation and recognition. Ad-
vanced Robotics, 25(6-7):871–891, 2011.

Teodor Mihai Moldovan, Sergey Levine, Michael I. Jordan, and
Pieter Abbeel. Optimism-driven exploration for nonlinear
systems. In IEEE International Conference on Robotics and
Automation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015,
pages 3239–3246, 2015.

Adithyavairavan Murali, Siddarth Sen, Ben Kehoe, Animesh Garg,
Seth McFarland, Sachin Patil, W. Douglas Boyd, Susan Lim,
Pieter Abbeel, and Kenneth Y. Goldberg. Learning by
observation for surgical subtasks: Multilateral cutting of 3d
viscoelastic and 2d orthotropic tissue phantoms. In IEEE
International Conference on Robotics and Automation, ICRA
2015, Seattle, WA, USA, 26-30 May, 2015, pages 1202–1209,
2015.

Scott Niekum, Sarah Osentoski, George Konidaris, and Andrew G.
Barto. Learning and generalization of complex tasks from
unstructured demonstrations. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS 2012,
Vilamoura, Algarve, Portugal, October 7-12, 2012, pages
5239–5246, 2012.

Nicolas Padoy, Diana Mateus, Daniel Weinland, M-O Berger, and
Nassir Navab. Workflow monitoring based on 3d motion
features. In Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on, pages 585–592.
IEEE, 2009.

Gwénolé Quellec, Mathieu Lamard, Béatrice Cochener, and Guy
Cazuguel. Real-time segmentation and recognition of surgical
tasks in cataract surgery videos. IEEE Trans. Med. Imaging, 33
(12):2352–2360, 2014.

Carol E Reiley, Erion Plaku, and Gregory D Hager. Motion
generation of robotic surgical tasks: Learning from expert
demonstrations. In Engineering in Medicine and Biology
Society (EMBC), 2010 Annual International Conference of the
IEEE, pages 967–970. IEEE, 2010.

Guy Rosman, Mikhail Volkov, Dan Feldman, John W Fisher III,
and Daniela Rus. Coresets for k-segmentation of streaming
data. In Advances in Neural Information Processing Systems,
pages 559–567, 2014.

Ardavan Saeedi, Matthew Hoffman, Matthew Johnson, and Ryan
Adams. The segmented ihmm: A simple, efficient hierarchical
infinite hmm. arXiv preprint arXiv:1602.06349, 2016.

Cynthia Sung, Dan Feldman, and Daniela Rus. Trajectory
clustering for motion prediction. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on,
pages 1547–1552. IEEE, 2012.

Hao Tang, Mark Hasegawa-Johnson, and Thomas S Huang. Toward
robust learning of the gaussian mixture state emission densities
for hidden markov models. In Acoustics Speech and Signal
Processing (ICASSP), 2010 IEEE International Conference on,
pages 5242–5245. IEEE, 2010.

Ajay Kumar Tanwani and Sylvain Calinon. Learning robot
manipulation tasks with task-parameterized semi-tied hidden
semi-markov model. 2015.

Lingling Tao, Luca Zappella, Gregory D Hager, and René Vidal.
Surgical gesture segmentation and recognition. In Medical Im-
age Computing and Computer-Assisted Intervention–MICCAI
2013, pages 339–346. Springer, 2013.

Aleksandar Vakanski, Iraj Mantegh, Andrew Irish, and Farrokh
Janabi-Sharifi. Trajectory learning for robot programming by
demonstration using hidden markov model and dynamic time
warping. IEEE Trans. Systems, Man, and Cybernetics, Part B,
42(4):1039–1052, 2012.

Balakrishnan Varadarajan, Carol Reiley, Henry Lin, Sanjeev
Khudanpur, and Gregory Hager. Data-derived models for
segmentation with application to surgical assessment and
training. In Medical Image Computing and Computer-Assisted

Prepared using sagej.cls

Krishnan, Garg et al. 15

Intervention–MICCAI 2009, pages 426–434. Springer, 2009.
Mikhail Volkov, Guy Rosman, Dan Feldman, John W Fisher,

and Daniela Rus. Coresets for visual summarization with
applications to loop closure. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages 3638–
3645. IEEE, 2015.

Alan S Willsky, Erik B Sudderth, Michael I Jordan, and Emily B
Fox. Sharing features among dynamical systems with beta
processes. In Advances in Neural Information Processing

Systems, pages 549–557, 2009.
Chenxia Wu, Jiemi Zhang, Silvio Savarese, and Ashutosh Saxena.

Watch-n-patch: Unsupervised understanding of actions and
relations. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4362–4370, 2015.

Luca Zappella, Benjamı́n Béjar Haro, Gregory D. Hager, and René
Vidal. Surgical gesture classification from video and kinematic
data. Medical Image Analysis, 17(7):732–745, 2013.

Prepared using sagej.cls

	Introduction
	Contributions and Main Results

	Background and Related Work
	Segmentation in Surgical Robotics
	Unsupervised Segmentation Models

	Problem Setup
	Demonstrations
	Regularity
	Looping
	Problem Statement

	A Probabilistic Model For Transitions
	Demonstrations as Dynamical Systems
	Transition State Distributions
	Feedback Model

	Transition State Clustering Algorithm
	Non-Parametric Mixture Models
	Transition States Identification
	Learning The Transition State Distribution
	Outlier Rejection and Loop Compaction

	Results
	Synthetic Example
	Overview
	Accuracy v.s. Noise
	TSC Hyper-Parameters
	Loops
	Dynamical Trajectories

	Surgical Data Experiments
	Visual Features
	Pruning and Compaction

	Results with Surgical Data
	Comparison to Surgemes

	Future Work
	Conclusion

