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Abstract— For applications such as manufacturing, caging
grasps restrict object motion without requiring complete immobi-
lization, providing a robust alternative to force- and form-closure
grasps. Energy-bounded cages are a new class of caging grasps
that relax the requirement of complete caging in the presence of
external forces such as gravity or constant velocity pushing in the
horizontal plane with Coulomb friction. We address the problem
of synthesizing planar energy-bounded cages by identifying grip-
per and force-direction configurations that maximize the energy
required for the object to escape. We present Energy-Bounded-
Cage-Synthesis-2-D (EBCS-2-D), a sampling-based algorithm
that uses persistent homology, a recently-developed multiscale
approach for topological analysis, to efficiently compute candi-
date rigid configurations of obstacles that form energy-bounded
cages of an object from an α-shape approximation to the
configuration space. If a synthesized configuration has infinite
escape energy then the object is completely caged. EBCS-2-D
runs in O(s3 + sn2) time, where s is the number of samples
and n is the number of object and obstacle vertices, where
typically n � s. We observe runtimes closer to O(s) for
fixed n. We implement EBCS-2-D using the persistent homology
algorithms toolbox and study performance on a set of seven
planar objects and four gripper types. Experiments suggest that
EBCS-2-D takes 2–3 min on a 6 core processor with 200 000 pose
samples. We also confirm that an rapidly-exploring random
tree* motion planner is unable to find escape paths with lower
energy. Physical experiments on a five degree of freedom Zymark
Zymate and ABB YuMi suggest that push grasps synthesized
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by EBCS-2-D are robust to perturbations. Data and code are
available at http://berkeleyautomation.github.io/caging/.

Note to Practitioners—For automation applications in man-
ufacturing where object models are precisely known, “energy-
bounded cages” are a robust approach to robot grasping in
the presence of gravity or friction. This paper presents a
synthesis algorithm for planar instances, where the object can
be modeled as a planar extrusion and the motion occurs in the
vertical or horizontal plane. We also present experiments with
robots and a website with code and data.

Index Terms— Computational geometry, motion planning,
robots, topology.

I. INTRODUCTION

IN MANUFACTURING, there are many applications where
parts must be reliably grasped and moved without pre-

cise constaints on object pose (for example in kitting or
logistics). Caging configurations, in which an object’s mobility
is bounded by a set of obstacles, can provide robustness to
perturbations in object pose.

The standard model of caging (complete caging) considers
whether a set of obstacles can be placed in a configuration such
that the object cannot escape because its mobility is restricted
to a bounded set in the free configuration space F [1], [2] as
illustrated in the left part of Fig. 1. When an energy potential
U : C × C → R specifying an energy field such as gravity is
defined on the configuration space C, the notion of caging can
be generalized to energy-bounded caging [3], where the object
is constrained to a bounded path-component of the subset of
the free configuration space F with energy less than some
threshold u. This arises, for example, when a constant force-
field such as gravity acts on the object. We show that energy-
bounded cages also occur in the context of constant velocity
planar pushing with Coulomb friction.

This paper presents Energy-Bounded-Cage-Synthesis-2-D
(EBCS-2-D), a sampling-based algorithm for synthesis of
energy-bounded cages given a polygonal object and a rigid
configuration of polygonal obstacles under a concave energy
field defined over object translations, such as gravity or planar
pushing. EBCS-2-D synthesizes an list of energy-bounded
cages ranked by escape energy using persistent homology,
a tool from computational topology that efficiently computes
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Fig. 1. Complete and energy-bounded cages. a complete cage (left). The
blue object is constrained to a bounded component of the free configuration
space by the rigid arrangement of the two gripper fingers (black). Two energy-
bounded cages with respect to a force direction f , e.g., from gravity or con-
stant velocity pushing with Coulomb friction (middle and right). The blue
object is constrained by both the gripper and the force field. The rightmost
configuration requires more energy to escape than the middle configuration.

representatives for bounded components of the free config-
uration over varying escape energy thresholds. EBCS-2-D
constructs a weighted α-shape from samples of object poses
and a lower bound on their penetration depth [3], finds a set of
candidate energy-bounded cages using persistence, and prunes
the candidates based on collisions and energy level. The escape
energies returned by EBCS-2-D provably lower bound the true
minimum escape energy for each returned cage. If the returned
escape energy is infinite, then the object is completely caged.

We implement EBCS-2-D using the persistent homology
algorithms toolbox (PHAT) [4] to efficiently identify the most
robust energy-bounded cages. We evaluate EBCS-2-D on a
set of seven polygonal parts with parallel-jaw grippers using
a push energy field and use it to synthesize optimal push
directions. In each case, rapidly-exploring random tree (RRT)*
optimal path planning was unable to find an escape path with
lower energy than the estimated lower bound within 120 s.
We also use EBCS-2-D for planar pushing on a physical
Zymark Zymate robot and ABB YuMi with the parallel-
jaw grippers and confirm that configurations synthesized by
EBCS-2-D successfully push objects on a planar worksurface.

II. RELATED WORK

A. Complete Caging Versus Energy-Bounded Caging

The standard concept of caging, which we refer to as
“complete” caging, was introduced by Kuperberg [5] and
extended by Rimon and Blake [6]. Caging is distinct from
complete immobilization of an object by means of form-
or force-closure grasps [7], which depend on the local contact
geometry. A complete cage of an object causes the object to
be constrained to a bounded subset of its free configuration
space and requires reasoning about global properties of the
configuration space.

Early research on caging studied the caging condition
for n points in the plane caging a planar object [1], [5].
Rimon and Blake [6] described the space of cages
for a two-finger gripper with one degree of freedom.
Sudsang and Ponce [8], [9] proposed the caging-based meth-
ods for manipulating polygonal objects by means of disc-
shaped robots moving in the plane. Allen et al. [10] proposed
an algorithm to find all two-finger cage formations of planar
polygonal objects by two point fingers which was extended to
equilateral three-fingered hands by Bunis et al. [11]. Vahedi

and van der Stappen [2] studied the computation of two- and
three-finger cages on polygons and used a classification into
squeezing and stretching cages. Rodriguez et al. [12] estab-
lished and studied caging as a prestage to force-closure grasp-
ing. Diankov et al. [13] demonstrated that caging grasps can
be used to manipulate articulated objects such as door handles.

Recent research has focused on computing cages for specific
object families or approximate algorithms due to the difficulty
of computing the configuration space for complex gripper
and object geometries. These lines of research have primarily
focused on synthesizing caging grasps from features in the
object surface [14], [15] (e.g., handles) using features of the
object surface to rank potential caging configurations [16].
Other research has studied cell-based approximations of the
configuration space based on sampling [17].

Mahler et al. [3] defined energy-bounded caging and pre-
sented energy-bounded cage analysis (EBCA)-2-D, an analysis
algorithm that can provably lower bound the minimum escape
energy to verify energy-bounded cages for a fixed object
and obstacle configuration. The present paper proposes a
synthesis algorithm, EBCS-2-D and considers energy-bounded
cages in the context of planar pushing. This is an extended
and revised version of “Synthesis of Energy-Bounded Planar
Caging Grasps using Persistent Homology,” which appeared
at the Workshop on the Algorithmic Foundations of Robot-
ics (WAFR) in December 2016 and was invited to the T-ASE
special issue on WAFR. This version includes revised text,
visualizations of persistence diagrams from real data, addi-
tional experiments evaluating energy-bounded cages for planar
pushing with a physical ABB YuMi robot, and appendices for
proofs and mathematical derivations.

B. Pushing for Manipulation

Mason [18] introduced the study of planar pushing to robot-
ics and studied mechanics and planning problems for pushing
operations [19]. Constant-velocity quasi-static planar pushing
in the horizontal plane can be modeled by an energy potential.
Peshkin and Sanderson [20] gave a method to find the locus
of the centers of rotation of a planar object for all possible
pressure distributions of the object on a planar worksurface.
Planar pushing can reduce grasp uncertainty using mechanical
compliance and can be used to orient parts [21]. Goldberg [22]
gave the first complete algorithm for synthesizing a sequence
of pushes to orient polygonal parts without sensory feed-
back. Lynch and Mason [23] investigated controllability of
planar pushing, to determine whether an object can be moved
between two configurations purely by pushing actions using
point and line contacts. Dogar et al. [24] used a physics-
based analysis of 2-D contact wrenches to compute push
grasps in clutter and proposed a combinatorial search method
to plan push grasps in [25]. Koval et al. [26] decomposed
grasping policies into a pre and post contact strategy to reduce
uncertainty during pushing actions preceding a grasp using a
partially observable Markov decision process planner.

C. Motion Planning and Computational Topology

We utilize sampling and a discrete representation of the
collision space using α-shapes to reason about cages, building
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on previous work on motion planning and computational
topology. Semialgebraic function representations of configu-
ration space can be used to prove path nonexistence [27],
but in practice can be prohibitively expensive to compute.
Zhang et al. [28] utilized a rectangular cell decomposition
of the configuration space to prove path nonexistence for
motion planning by assigning cells to the collision space based
on penetration depth. McCarthy et al. [29] used (weighted)
α-shapes, a simplicial complex construction defined by
Edelsbrunner [30], to represent the collision space from pose
samples, and presented an algorithm that can prove path
nonexistence. In our previous work [3], we showed that an
α-shape-based approximation to the configuration space could
be used to analyze a given object and obstacle configuration to
check whether it is a complete or energy-bounded cage. The
present paper also builds on recent advances in the topological
data analysis [31] and the concept of persistent homology [32]
to identify “voids” corresponding to cages. Other applications
of persistent homology in robotics include robust methods for
clustering trajectories [33] and for motion planning [34], [35].

III. DEFINITIONS AND PROBLEM STATEMENT

Given a rigid polygonal object O, a rigid configuration of
obstacles G on a planar worksurface, and an energy func-
tion U , we consider the problem of finding and ranking the
set of energy-bounded cages of O by G.

A. Complete Caging and Energy-Bounded Caging

We consider a planar configuration space C ⊆ SE(2) of a
compact polygonal planar object O ⊂ R

2 placed in a planar
workspace with obstacles defined by fixed positions of a set
of k polygons G = P1 ∪ . . . ∪ Pk ⊂ R

2, such as the jaws of
a robot gripper. We assume the center of mass is known for
both the object and obstacles. We denote the object polygon in
pose q = (x, y, θ) ∈ SE(2) = R

2 × S
1 relative to a reference

pose q0 by O(q). We define the collision space of O relative
to G by Z = {q ∈ SE(2) : int (O(q)) ∩ G �= ∅} and denote
by F = SE(2) − Z the free configuration space.

We define the energy required to move the object between
poses by an energy function U : SE(2) × SE(2) → R

satisfying U(q, q) = 0,∀q ∈ SE(2). This is consistent
with [3], in which the reference pose was implicit in the
energy function. For a fixed threshold u ∈ R and reference
q0 ∈ SE(2) define the u-energy forbidden space by Zu(q0) =
Z∪{q ∈ C : U(q, q0) > u} and the u-energy admissible space
Fu(q0) = SE(2)−Zu(q0). In this paper, we use the following
definitions of caging [3] (see Fig. 2):

Definition (Complete and Energy-Bounded Caging): A con-
figuration q0 ∈ F is completely caged if q0 lies in a bounded
path-component of F . We call q0 as a u-energy-bounded cage
of O with respect to U if q0 lies in a bounded path-component
of Fu(q0). Furthermore, the minimum escape energy, u∗, for
an object O and obstacle configuration G, is the infimum over
values of u such that q is not a u-energy-bounded cage of O,
if a finite such u∗ exists. Otherwise, we define u∗ = ∞.

While energy-bounded cages can be defined for any energy
function U , finding bounded components of C for all possible

Fig. 2. Top row depicts gripper jaws G (in black) and an object O (in blue)
in three configurations. The bottom row illustrates conceptually the corre-
sponding point q0 ∈ S E(2) in configuration space. While a complete cage
corresponds to an initial pose q0 completely enclosed by forbidden space Z ,
the energy-bounded cage on the right instead correpsonds to a case where q0
is enclosed by Zu = Z∪U(q0, u) where U(q0, u) = {q ∈ C : U(q, q0) > u}
for U that is strictly increasing with increasing vertical coordinate. The
smallest value of u such that q0 is not enclosed is called the minimum escape
energy, u∗.

pairs of poses in the energy function may be computationally
expensive. Thus, for synthesis, we require that the energy
function can be derived from a univariate potential function
P : SE(2) → R: U(qi , q j ) = P(qi ) − P(q j ). In this paper,
we further assume that P depends only on the translational
component R

2 of SE(2) and that P is concave on that space,
which guarantees that the point of minimum potential within
any convex set is on the boundary of the set. Given such
an energy field U , the objective is to synthesize all energy-
bounded cages qi ∈ SE(2) with nonzero minimum escape
energy.

B. Energy Functions

We now derive energy functions for gravity in the vertical
plane and constant force pushing in the horizontal plane.
We develop such functions based on the energy (mechani-
cal work) that wrenches must exert to transport the object
between two poses under a nominal wrench resulting from
pushing or gravity.

1) Gravity in the Vertical Plane: Let m denotes the mass of
the object. Then, the energy required to move the object from
a reference configuration qi to configuration q j is U(q j , qi ) =
mg (y j − yi ), where g = 9.81 m/s2 is the acceleration due
to gravity in the y-direction [3], [36]. This corresponds to the
potential P(q) = mgy.

2) Constant-Velocity Linear Pushing in the Horizonal
Plane: Consider an object being pushed along a fixed direction
v̂ ∈ S1 by a gripper with a constant velocity on a horizonal
worksurface under the quasi-static conditions and Coloumb
friction with uniform coefficient of friction μ [18]–[20]. Then,
the energy function U(q j , qi ) = Fp v̂ · (x j − xi , y j − yi ) − κ
is a lower bound on the energy required to move the object
from pose qi to q j relative to G, where Fp ∈ R is a bound
on the possible resultant force due to contact between the
object and gripper and κ ∈ R is a bound on the possible
contact torques and frictional wrenches depending on the
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Fig. 3. We sample a set of poses Q and their penetration depth (left). An
approximation of the forbidden space Z ⊂ S E(2) from Fig. 2 by unions
of balls around sampled points Q results in an α-shape simplicial complex
A(X) (gray triangles) that is a subset of Z (right). The triangles of the
weighted Delaunay triangulation D(X) that are not in A(X) approximate the
free space (red triangles).

object geometry O, the gripper geometry G, and the friction
coefficient μ. A justification is given in Appendix B. We use
the linear potential P(q) = Fp v̂ · (x, y) to lower bound the
minimum energy required for the object to escape under the
nominal push wrench.

C. Configuration Spaces and α-Complexes

We utilize a family of simplicial complexes called
α-complexes [30] to approximate the collision space Z and
u-energy forbidden space [3]. For this purpose, we first
uniformly sample a collection of s poses Q = {q1, . . . , qs},
qi = (xi , yi , θi ) in Z and determine the radius r(qi ) > 0
for each qi , such that the metric ball B(qi ) = {q ∈ SE(2) :
d(q, qi ) ≤ r(qi )} is completely contained in Z . These radii
are computed using algorithms to lower bound the penetration
depth [37] using the standard metric d on SE(2); details can
be found in [3]. The union of these balls B(Q) = ∪s

i=1B(qi )
forms a subset of the collision space that approximates Z . See
the left part of Fig. 3 for a conceptual illustration.

We can construct a cell-based approximation to Z using
weighted α-shapes to guarantee that the cells are a subset
of Z . First, we follow the approach of [3] to lift samples from
Q to a set X ⊂ R

3 for computational reasons (see [3] for
details). We then construct a weighted α-shape representation
of B(X) [30], [38] since the shape of the union of balls is
difficult to analyze computationally.

Weighted α-shapes are a type of simplicial complex. A geo-
metric k-simplex σ = [v0, . . . , vk] in R

d is a convex hull of
k + 1 ordered affinely independent elements v0, . . . , vk ∈ R

d

and a convex hull of an ordered subset of these elements is
called a face τ of σ , indicated by τ ≤ σ . A finite simplicial
complex K is a nonempty set of simplices such that if σ ∈ K
and τ ≤ σ , then τ ∈ K and if σ, σ � ∈ K, then σ ∩ σ �
is empty or an element of K. In dimension 3, a simplicial
complex K is a union of points, line segments, triangles, and
tetrahedra whose intersections are either empty or another
simplex in K, thus generalizing the idea of both a graph
and a triangulation in R

3. The α-shape simplicial complex
A(X) corresponding to B(X) lies strictly inside B(X) and
is homotopy equivalent to B(X), meaning that topological
properties of B(X) can be computed directly from A(X) [30].
In Addition, all simplices in A(X) are contained in D(X), the
weighted Delaunay triangulation of X , a data structure that

triangulates the convex hull of X . Fig. 3 provides a conceptual
illustration.

D. Persistent Second Homology

Persistent homology [32] studies the topological fea-
tures (e.g., holes, voids) that are created and destroyed over
one parameter families of simplicial complexes called filtra-
tions. Fig. 4 provides a conceptual visualization of 2-D slices
of “voids” found by persistence for a 3-D filtration and a
qualitative persistence diagram. A simplexwise filtration of a
simplicial complex K = ∪n

i=1σi is a collection of simplicial
complexes Ki such that Ki = ∪i

i=1σi , so that Ki+1 is the result
of adding a single simplex σi+1 to Ki . We call i as the filtration
index. Such a filtration can arise naturally when a function
f : K → R is defined on the set simplices of K and simplices
are ordered in decreasing values of f : f (σi ) ≥ f (σ j ) for
all i ≤ j . Thus, persistence finds the topological features
that emerge as the simplices are added in order of decreasing
f . Here, f (σi ) is called the filtration value corresponding to
filtration index i . The j th persistence diagram measures the
dimension of the j th homology group H j (Ki ) that corresponds
to a vector space (with finite field coefficients). The dimension
of each of these spaces is a topological invariant that does
not vary under continuous deformations of the underlying
simplicial complex H (Ki). In this paper, we are interested
in subcomplexes Ki of the weighted Delaunay triangulation
D(X) ⊂ R

3 and the second homology group H2(Ki ). Regions
of space that are completely enclosed by Ki correspond to
components of H2(Ki ) [39]. These voids in Ki can appear as
we add new simplices with increasing i , or they can disappear
as voids are filled in. The persistent second homology diagram
enables us to visualize these topological changes. Each point
(x, y) in the diagram corresponds to a pair of filtration indices
(i, j) recording the fact that a void has “appeared” at index
i and disappeared at index j . For a geometric simplicial
complex, these index pairs (i, j) correspond to simplices
(σi , σ j ), where σ j is a tetrahedron (a three-simplex) which
destroys or “fills in” a void, while σi corresponds to a triangle
(2-simplex) that corresponds to the last complex needed to
first create a fully enclosed void. The set of (i, j) pairs can be
displayed in the (index)-persistence diagram, or alternatively,
when the filtration arises from a function f , we may display
the set of points [ f (σi ), f (σ j )]. By considering the vertical
distance | f (σi ) − f (σ j )| from the diagonal, we can read off
the parameter range of f during which a void exists in the
evolution of the filtration.

IV. EBCS-2-D SYNTHESIS ALGORITHM

EBCS-2-D (Fig. 5) takes as input a polygonal object O,
obstacle configuration G, and continuous concave potential
function P , and outputs a set of energy-bounded cages that
require nonzero energy to escape.

Using uniform sampling, the algorithm first generates s
object poses in collision Q = {q1, . . . , qs} and their corre-
sponding penetration depths R = {r1, . . . , rs}. We lift the
poses to R

3 and construct an α-shape approximation to the
configuration space. Next, we construct a filtration by sorting
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Fig. 4. Persistence diagram for ranking energy-bounded cages. Polygonal part and gripper polygons serve as input (left). We sample object poses X in
collision and generate an α-shape representation (shown in gray in the three middle figures). Given an energy potential, we insert simplices in D(X)− A(X) in
decreasing order of energy potential, creating a filtration of simplicial complexes. Voids (yellow and orange) are born with the addition of edges σi and σ j (red)
at threshold potential levels pi and p j , respectively, and die with the additions of the last triangle in each void at potential pk (red). The associated second
persistence diagram reveals voids corresponding to energy-bounded cages. In particular, configuration q1 is persistent for a larger energy difference than
configuration q2 (right). The escape energy of each configuration is equal to the difference in potentials: u1 = pk − pi and u2 = pk − p j , and by the filtration
ordering this implies that q1 has higher escape energy than q2.

all simplices in the free space in order of decreasing energy
level and use persistent homology to identify path components
that are bounded by the u-energy forbidden space. Finally,
we examine the simplices within each bounded component in
order of increasing energy to check for a collision-free object
pose, and return the poses extracted from each component.
Fig. 4 illustrates the use of persistence in our algorithm.

A. Filtrations and Persistence from Energy Functions

To synthesize energy-bounded cages with persistence,
we first order the simplices of the α-shape approximation
by decreasing energy level. We assumed that the potential
P : SE(2) → R

3 depends only on the translational component
R

2 of SE(2) and is concave on that space. In this case, for
any k-simplex σ = Conv(v0, . . . , vk) ∈ D(X) − A(X) the
maximum principle of convex optimization [40] implies that
the minimum occurs on the boundary of the simplex, which
is a vertex of σ since R

2 is unbounded

min
x∈σ

P(π(x)) = min{P(π(v0)), . . . , P(π(vk))}
where π : R

3 → SE(2) denotes the projection to SE(2).
Using this fact, we construct a function D(X) → R

f (σ ) =
{

minx∈σ P(π(x)) σ ∈ D(X) − A(X)

∞ σ ∈ A(X).

This gives rise to a filtration K = K (X, U) : ∅ = K0 ⊂ K1 ⊂
. . . ⊂ Kn ⊂ D(X) of simplices in D(X) with respect to P
as described in Section V-C, which we can use to find the
bounded path-components corresponding to energy-bounded
cages.

EBCS-2-D finds pairs of simplices σi , σ j corresponding
to the birth and death, respectively, of a bounded path-
component C(X) ⊂ D(X) in the free configuration space
using persistent homology. All collision-free configurations
within the bounded path-component are energy-bounded cages
by definition. Therefore, EBCS-2-D next searches for the
configuration q ∈ C(X)∩F with the highest minimum escape

Fig. 5. EBCS-2-D.

energy by iterating over the set of centroids of simplices
in C(X). While the set of simplex centroids only approximates
C(X) ∩ F , in practice the centroids cover the space well
due to the large number of samples used to construct the
configuration space. The algorithm runs in O(s3 + sn2) time,
where s is the number of samples and n is the total number
of object and obstacle vertices, since α-shape construction
is O(s2 + sn2) [3], [29] and the matrix reduction used in
persistent homology is O(s3) in the worst case [41].



MAHLER et al.: SYNTHESIS OF ENERGY-BOUNDED PLANAR CAGING GRASPS USING PERSISTENT HOMOLOGY 913

B. Correctness

EBCS-2-D returns energy-bounded cages with a provable
lower bound on the minimum escape energy:

Theorem 1: Let Q̂ = {(q̂1, û1), . . . (q̂n, ûn)} denote the
energy-bounded cages returned by EBCS-2-D. For each
(q̂i , ûi ) ∈ Q̂, q̂ is a û-energy bounded cage of O with respect
to U .
A detailed proof is given in Appendix A.

C. Extension to Pushing

EBCS-2-D can be applied to push grasping in the horizontal
plane. We use it to find push directions that yield robust
energy-bounded cages by running EBCS-2-D for a set of
sampled push directions using the constant velocity linear
push energy of Section III-B. The extension runs EBCS-2-D
using M push angles uniformly sampled from [(π/2) − ϕ,
(π/2) + ϕ] and returns a ranked list of push directions
and energy-bounded cages that can be reached by a linear,
collision-free path along the push direction. While the potential
changes for each such push direction, the simplices only need
to be re-sorted, and therefore, the sampling and α-complex
construction only need to be performed once.

V. EXPERIMENTS

We implemented EBCS-2-D in C++ and evaluated its per-
formance on a set of polygonal objects under both gravitational
and pushing energy fields. We used Computational Geometry
Algorithms Library [42] to compute α-shapes, the Gilbert–
Johnson–Keerthi Expanding Polytope Algorithm (GJK-EPA)
algorithm of libccd [43] to compute penetration depth, and
the twist reduction algorithm implemented in PHAT [4]
to compute the second persistence diagram. Our data set
consisted of seven polygonal parts created by triangulating
the projections of models from Yale-CMU-Berkeley [44] and
3-DNet [45] onto a plane. All experiments ran on an Intel
Core i7-4770K 350-GHz processor with six cores.

A. Energy Bounded Cages Under Linear Push Energy

We consider a linear push energy field with a push force
bound of Fp = 1.0 for the set of parts with four grippers:
rectangular parallel jaws, an overhead projection of a Zymark
Zymate gripper with parallel jaws [46], an overhead projection
of a Barrett hand with a pregrasping shape inspired by [25],
and a four finger disc gripper inspired by [47]. We ran the
pushing extension to EBCS-2-D for the rectangular parallel
jaws, Zymark gripper, and Barrett hand with s = 200 000
samples, an angle limit of ϕ = (π/4), and P = 5 push
directions to sweep from −(π/4) to (π/4) in intervals of
(π/8), and pruned all pushes with û < 0.5 to ensure that our
set of pushes was robust. For the four finger gripper, we ran
EBCS-2-D with a fixed vertical push direction to illustrate the
ability of our algorithm to prove complete cages. EBCS-2-D
took approximately 170 s to run on average for a single
push direction. Fig. 6 illustrates configurations synthesized
by EBCS-2-D with the estimated minimum escape energy û,
which is the distance against the linear push energy that the

Fig. 6. Illustration of highest energy configurations and push directions
synthesized using EBCS-2-D ranked from left to right for seven example
polygonal objects (blue) and grippers (black) under a linear planar pushing
energy field with a push force bound of Fp = 1.0. Displayed are three objects
for each of the following grippers: (left-to-right, top-to-bottom) parallel-
jaw grippers with rectangular jaws, a Barrett hand with fixed preshape,
a Zymark Zymate gripper with fixed opening width, and a four finger disc
gripper. Below each object the escape energy û estimated by EBCS-2-D using
s = 200 000 pose samples, which is the distance the object would have to
travel against the pushing direction, and to the right is the synthesized push
energy direction f . For each test case we searched over five energy directions
from −π/4 to π/4 and checked push reachability as described in Section IV-C
except for the four finger gripper, for which we ran only EBCS-2-D to
illustrate complete cages. The energy of the synthesized configurations is not
always proportional to the depth of part within the grippers, as suggested by
the first row of results for the parallel jaw and Zymark gripper configurations.
EBCA-2-D also synthesizes several complete cages for the four finger gripper.

object must travel to escape. To evaluate the lower bound of
Theorem 1, we also used RRT* to attempt to plan an object
escape path over the set of collision-free poses with energy
less than û, which was not able to find an escape path with
energy less than û in 120 s of planning [3].

B. Sample and Time Complexity

We also studied the sensitivity of the estimated escape
energy for the highest energy configurations synthesized by
EBCS-2-D for a fixed push direction and the algorithm runtime
to the number of pose samples s.

Fig. 7 (left) shows the ratio of û for s ∈ {12.5, 25, 50,
100, 200, 400} ×103 pose samples to û at s = 400 000
pose samples for each of the displayed objects and gripper
configurations. Fig. 7 (top) shows results using a parallel-
jaw gripper and Fig. 7 (bottom) shows results with a Zymark
Zymate gripper to illustrate sensitivity to the complexity of
the polygonal gripper model. We averaged the ratios over five
independent trials per value of s. Case A is only within 80% of
the value at s = 400 000 after s = 200 000 samples, possibly
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Fig. 7. Sample complexity of EBCS-2-D (middle). Plotted is the ratio
of the highest minimum escape energy out of the energy-bounded cages
synthesized by EBCS-2-D, û∗, for the number of pose samples s =
{12.5, 25, 50, 100, 200, 400} × 103 on the object and gripper test cases
displayed on the left. Performance is broken down by the polygonal gripper
model used: parallel-jaw grippers (top) and a Zymark Zymate gripper (bot-
tom). The mean runtime of EBCS-2-D in seconds is broken down by
component of the algorithm for varying numbers of pose samples s =
{12.5, 25, 50, 100, 200, 400} × 103 (right). Each data point is averaged over
five independent runs for each of the object and gripper configurations on the
left. Despite the theoretical worst case s3 runtime, the algorithm runtime is
approximately linear in s, and is dominated by sampling time.

because of the long thin portion of the configuration space as
observed in [3]. Cases B and C both converge to within 95%
after about s = 200 000 samples. For cases D, E, and F with
the complex Zymate gripper, all configurations require more
samples to converge, possibly due to the thin portions of the
gripper tips. The sample complexity is comparable to analysis
of a single, fixed configuration with EBCA-2-D.

Fig. 7 (right) shows the relationship between the runtime
of EBCS-2-D in seconds versus the number of pose samples
s over five independent runs of the algorithm for the same
objects. We broke down the run time by the section of
the algorithm: sampling poses, constructing the α-shape to
aproximate C, sorting the simplices for the filtration, and
computing and pruning candidate energy-bounded cages with
persistence. The runtime is approximately linear in the number
of pose samples, and the largest portion of runtime is the
time to sample poses and compute penetration depth. This
suggests that the runtime is considerably below the worst case
s3 scaling in practice. The persistence diagram computation
in particular has been observed to commonly exhibit sub-
quadratic runtime [41] despite its worst case cubic complexity.
Runtime approximately doubles with the Zymate gripper due
to an increase in sampling time, consistent with the quadratic
time complexity of EBCS-2-D with respect to the number of
object and obstacle vertices.

C. Persistence Diagrams

To further illustrate the notion of persistence, we study
the persistence diagrams of the second homology group
for a single object and the Zymark Zymate gripper in
Fig. 8. To generate the diagram, we constructed the weighted
Delauanay triangulation and α-shape using s = 200 000 pose

Fig. 8. Persistence diagram for the second homology persistence pairs (cor-
responding to “voids”) in the filtration K identified during a run of EBCS-2-D
with s = 200 000 pose samples for a part (blue) and gripper configura-
tion (black) with a vertical push force. The (i, j) coordinate for each point
corresponds to the birth and death indices of the voids. Red points were
pruned by our algorithm. Three blue points were identified by EBCS-2-D as
energy-bounded cages, and their corresponding workspace configurations are
illustrated next to the points. Note that the magnitude of differences between
indices may not be indicative of the magnitude of energy differences between
configurations.

samples and examined the list 	 (generated on Line 14 of
the EBCS-2-D pseudocode in Fig. 5). We see that the three
energy-bounded cages returned by EBCS-2-D correspond to
the three most persistent pairs, which appear furthest from the
diagonal. Furthermore, our algorithm correctly rejects the large
number of candidate configurations with very low persistence.

D. Physical Experiments

We evaluated the performance of energy-bounded cages
synthesized by EBCS-2-D in pushing and grasping planar
objects on two physical robots.

1) Known Object Pose: We evaluated the pushes synthe-
sized by EBCS-2-D for the three object configurations on a
Zymark Zymate robot with the Zymark gripper illustrated in
Fig. 6 on a set of extruded fiberboard polygonal parts [46] to
evaluate performance when the exact object pose is known,
as is common in industrial automation. Fig. 9 (top) illustrates
this experiment. For each configuration, the object was placed
in the center of a turntable on a tepmlate to register the object
pose, rotated to align the push direction with the arm’s major
axis, and pushed forward while the turntable oscillated with
an amplitude of ±0.1 rad to simulate external wrenches on the
object. To test robustness, we added zero-mean Gaussian noise
with standard deviation of 5 mm to the gripper translation
and 0.04 rad to the gripper rotation in the plane. We then
evaluated whether or not the object was captured and remained
within the gripper jaws after being pushed 150 mm. Pushes
planned by EBCS-2-D had a success rate of 100% versus 41%
for a baseline of pushes planned by choosing gripper poses
uniformly at random from (x, y) in the object bounding box
and θ in [0, 2π).

2) Image-Based Pose Registration: We also evaluated pla-
nar pushing on a set of six 3-D objects using an ABB YuMi
with a parallel-jaw gripper using image-based registration to
index a planned push from a database of pushes synthesized
with EBCS-2-D to evaluate performance when the object
pose is not known a priori. Fig. 9 (bottom) illustrates our
experimental setup. First, we detected and segmented the each
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Fig. 9. Illustration of our experimental setups for executing energy-bounded
cages synthesized with EBCS-2-D on a Zymark Zymate robot (top) and ABB
YuMi robot (bottom). The Zymate was used to test performance when exact
object pose was known and the YuMi was used to test performance when
planning based on object segmentation masks in images. The synthesized
planar configuration for each manipulator (left). The object remains in the
gripper as it is pushed along a planar worksurface (right).

object from the background using color background subtrac-
tion with images from an overhead Primesense Carmine 1.08.
We extruded and triangulated the segmentation masks and used
EBCS-2-D to plan energy-bounded push-cages. To execute
a planned push, the object was placed in the center of the
planar worksurface by a human operator and the object was
registered by minimizing the pixelwise difference between
the new and original segmentation mask over all possible
orientations. The robot then attempted to push the object 10 cm
and lift the object by closing the jaws on the object after
the attempted push. We added zero-mean Gaussian noise with
standard deviation of 2.5 mm to the gripper translation in the
plane to test robustness to perturbations.

Table I summarizes the performance of energy-bounded
cages performed on the ABB YuMi for capturing the
object (keeping it between the jaws), pushing the object 10 cm,
and grasping and lifting the object. We evaluated each for
four trials with the object rotated by (π/2) on each trial,
and we compared against the random baseline used in the
Zymark Zymate experiments. The most common failure mode
occurred when the parallel jaws contacted the object before
reaching the target gripper configuration, suggesting that
modeling uncertainty in the gripper approach could improve
performance.

VI. DISCUSSION AND FUTURE WORK

We present EBCS-2-D, a synthesis algorithm for energy-
bounded cages of polygonal objects and rigid configurations

TABLE I

PERFORMANCE OF ENERGY-BOUNDED CAGES PLANNED BY
EBCS-2-D FOR CAPTURING, PUSHING, AND GRASPING

SIX PLANAR TEST OBJECTS FOR 14 TRIALS EACH ON

AN ABB YUMI VERSUS THE PERFORMANCE

OF A RANDOM BASELINE

of obstacles under a 2-D energy field, and use EBCS-2-D
to synthesize constant velocity planar pushes under Coulomb
friction. In the future work, we will model uncertainty in
gripper approach for pushing and explore caging as a prestage
to force-closure grasping and stretching cages [2], [12]. We
also plan to explore extensions of our algorithms to caging
in 3-D and to study energy functions to model task-specific
caging and fields due to electricity or magnetism.

APPENDIX A
CORRECTNESS OF EBCS-2-D

EBCS-2-D synthesizes energy-bounded cages of a polyg-
onal object O by a rigid configuration of polygonal obsta-
cles G with respect to a continuous energy function U :
SE(2) × SE(2) → R. We require that the energy function
U can be derived from a univariate potential function P(q) :
SE(2) → R, U(qi , q j ) = P(qi ) − P(q j ). We refer to poses
as q = (x, y, z) ∈ SE(2). See Fig. 5 for the EBCS-2-D
pseudocode or Section III for further definitions.

Theorem 2 (Correctness of EBCS-2-D): Assume the object
is specified as a compact polygon O ⊂ R

2 and the obstacles
are defined a rigid configuration of a set of k polygons G =
P1 ∪ . . .∪Pk ⊂ R

2. Furthermore, assume the energy function
U : SE(2) × SE(2) → R satisfies the following.

1) U(q, q) = 0 for all q ∈ SE(2).
2) U(qi , q j ) = P(qi ) − P(q j ) for all q ∈ SE(2) and a

potential function P : SE(2) → R.
3) P is continuous.
4) P((x, y, ·)) = c for some c ∈ R (P does not depend on

the orientation).
5) P is concave on the translational component R

2.

Let Q̂ = {(q̂i , ûi )}N
i=1 be the list of poses returned by

EBCS-2-D. For each (q̂, û) ∈ Q̂, q̂ is a û-energy bounded
cage of O with respect to U .

Proof: It suffices to show that (q̂, û) will only be added
to the solution set Q̂ if q̂ is a û-energy bounded cage
of O.

Lemma 3: Let D(X, R) denotes the weighted Delaunay
triangulation of the pose samples X and penetration depths
R (computed on Line 11). Let A(X, R) ⊂ D(X, R) denotes
the weighted alpha shape of X and R at α = 0 (com-
puted on Line 12). Let π be the covering map defined in
Section IV of [3]. Given any p ∈ R, let Wp(X, R) =
{σ ∈ D(X, R) | f (σ ) > p} denotes the p-potential forbidden
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subcomplex of X , R, where

f (σ ) =
{

minx∈σ P(π(x)) σ ∈ D(X) − A(X)

∞ σ ∈ A(X).

For any pose q ∈ SE(2) and u ∈ R, let p(q) = u + P(q).
Then, if q ∈ F is in a bounded path-component of C −
π(Wp(q)(X, R)), q is a u-energy bounded cage of O.

Proof: The p-potential forbidden subcomplex Wp(q)

(X, R) ⊂ Vu(X, R)(q) the u-energy forbidden subcom-
plex of X , R with respect to q defined in [3]. This is
because ∀σ ∈ Wp(q)(X, R), either σ ∈ A(X, R) ⇒ σ ∈
Vu(X, R)(q) or P(σ ) > p(q) ⇔ P(qi ) > p(q) ∀qi ∈ σ ⇔
P(qi ) − P(q) = U(qi ) > u.

Recall that π(Vu(X, R)(q)) ⊂ Zu , the u-energy forbidden
space defined in [3], and therefore C − π(Wp(q)(X, R)) ⊃
Fu(q), the u-energy admissible space defined in [3]. There-
fore any path in C − π(Wp(q)(X, R)) can be restricted to
Fu(q) which implies that q lies in a bounded path-component
of Fu(q). Thus, by definition q is a u-energy-bounded
cage.

Now define the filtration K (X, P) : ∅ = K0 ⊂ K1 ⊂
. . . ⊂ Kn ⊂ D(X, R) of simplices in D(X, R) with respect
to f . Let I = {(im, jm)}M

m=1 denote the set of k persistence
pairs for K (X, P) such that dim(σim ) == 2. Then, any pair
(i, j) ∈ I corresponds to the birth and death of a class of
the second homology group H2. We take this as an indication
that π(σk) lies in a bounded path-component π(C(Ki , σ j )) ⊂
π(D(X, R) − Ki ) and additionally verify boundedness using
a flood-fill algorithm [3], [29].

To verify that the component is bounded with respect to the
û energy forbidden space, let p = P(σi ) and u(q) = P(σi ) −
P(q) for any q ∈ C(Ki , σ j )∩F , if such a pose exists. By the
definition of the filtration, Ki = Wp(X, R). By Lemma 3 any
q ∈ C(Ki , σ j ) ∩ F is in a bounded path-component and is,
therefore, a u(q)-energy-bounded cage of O. EBCS-2-D only
returns q, u for u = P(σi ) − P(q) (Line 19) if q is collison
free (Line 20) and in the same bounded path-component as
σ j (Line 16). Therefore, q̂ is a û-energy-bounded cage of O
with respect to U .

APPENDIX B
ENERGY FUNCTION FOR CONSTANT VELOCITY

QUASI-STATIC PLANAR PUSHING

Consider a compact polygonal object O ⊂ R
2 of mass mO

and a rigid configuration of a set of k polygonal obstacles
G = P1 ∪ . . .∪Pk ⊂ R

2 of total mass mG . Let m = mO + mG

be the total mass. Denote by q ∈ SE(2) the pose of O
relative to the reference frame of G. Assuming quasi-static
conditions and a Coloumb friction model, let the object and
gripper rest on a horizontal worksurface under gravity with a
uniform coefficient of friction between the gripper, object, and
surface: μ ∈ R. Assume a uniform pressure distribution for
both O and G and let the center of mass of each be located at
the centroid of the respective pressure distributions. Assume
that the magnitude of any external wrench we = ( fe, τe) on
the object is bounded by a constant λ.

Now, let G move along a fixed direction v̂ ∈ S1 with
constant translational velocity of magnitude β ∈ R and zero

angular velocity. Zero net force must be acting on G and O to
maintain this velocity, and therefore, the force due to pushing
f p is equal and opposite of the forces due to friction f f

and forces due to external perturbations fe. Thus, the pushing
force is bounded by the maximum force due to friction and
maximum magnitude of external wrenches: � f p�2 ≤ μMg+λ.
This force may be applied to O through contact with G, and
therefore f p may exert a torque τp on O relative to G such
that τp ≤ ρ f p , where ρ ∈ R is the maximum moment arm
of O [18]–[20].

To derive the energy function, consider the amount of
energy (mechanical work) that the time-varying external
wrench we(t) = ( fe(t), τe(t)) would have to exert to move
O along a continuous path γ : [0, 1] → SE(2) from pose
qi to q j (e.g., γ (0) = qi , γ (1) = q j ) with a constant speed
η under the pushing wrench wp = ( f p, τp) and time-varying
wrenches due to friction w f (t) = ( f f (t), τ f (t)) [36]

E(we) =
∫ 1

0
we(t) · γ̇ (t)dt .

By the constant speed assumption, the kinetic energy of the
object does not change. Therefore, the net work done on the
object over the path γ is zero due to conservation of energy

E(we + wp + w f ) =
∫ 1

0
(we(t) + wp + w f (t)) · γ̇ (t)dt = 0

⇒ E(we) = −E(wp + w f ).

We can upper bound the amount of work done by the constant
pushing wrench wp and time-dependent frictional wrench w f

using Cauchy-Schwarz

E(wp + w f ) =
∫ 1

0
wp · γ̇ (t)dt +

∫ 1

0
w f (t) · γ̇ (t)dt

= wp ·
∫ 1

0
γ̇ (t)dt +

∫ 1

0
w f (t) · γ̇ (t)dt

≤ (μMg + λ)v̂ · (x j − xi)

+ ρ (μMg + λ)(θ j − θi )

+ μMg
∫ 1

0
�γ̇ (t)�2 dt (by Cauchy-Schwarz)

≤ (μMg + λ)v̂ · (x j − xi)

+ 2πρ (μMg + λ) + ημMg.

And therefore, under our assumptions, we can lower bound
the energy exerted by any external wrenches by

U(q j , qi ) = Fp v̂ · (x j − xi ) − κ(O,G, μ)

Fp = −(μMg + λ)

κ(O,G, μ) = 2πρ (μMg + λ) + ημMg.

This motivates our use of the linear, univariate potential
P(q) = Fp v̂ · (x j − xi ).

APPENDIX C
NUMERIC ISSUES IN IMPLEMENTATION

In order for EBCS-2-D to be correct, the computed pene-
tration depth ri for a pose qi must not be greater than the true
2-D generalized penetration depth, ri ≤ p(qi ). This can be
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theoretically achieved using the lower bound algorithm given
by Zhang et al. [28] by taking the maximum of the exact
penetration depth between pairs of convex pieces in a convex
decomposition of the object and obstacles, where the exact
penetration depth can be computed with the GJK-EPA [48].
However, in practice GJK-EPA computes the exact penetration
depth up to some tolerance ±ε. Thus to avoid misidentifying a
configuration as a complete or energy-bounded cage, in prac-
tice, we use ri = max(r̂i − ε, 0), where r̂i is the penetration
depth computed using the algorithm of Zhang et al. [28].
To avoid futher numeric issues related to imprecision in the
convex decomposition, computation of the maximum moment
arm, or the triangulation, in practice it may be beneficial to
additionally multiply the returned penetration depth by some
shrinkage factor 0 < ν < 1, ri = νmax(r̂i − ε, 0).
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