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A Complete Algorithm for Designing Planar 
Modular Using Fixtures Components 

Randy C. Brost, Member, IEEE, and 

Abstruct- Commercially available modular fixturing systems 
typically include a lattice of holes with precise spacing and 
an assortment of precision locating and clamping modules that 
can be rigidly attached to the lattice. Currently, machinists 
manually design a suitable arrangement of these modules to hold 
a given part. This requires expertise and can delay production. 
Futhermore, a machinist may in many cases settle upon an 
arrangement that is not optimal for a given machining operation. 

In this paper we present an implemented algorithm that accepts 
a polygonal description of the part silhouette, and efficiently 
constructs the set of all feasible fixture designs that kinematically 
constrain the part in the plane. Each fixture is comprised of three 
locators rigidly attached to the lattice and one sliding clamp, and 
constrains the part without relying on friction. 

The algorithm is based on an efficient enumeration of admis- 
sible designs that exploits part geometry and a graphical force 
analysis. The algorithm run time is linear in the number of 
designs found, which is bounded by a polynomial in the number 
of part edges and the part’s maximal diameter in lattice units. 
Our review of the literature suggests that this is the first fixturing 
algorithm that is complete in the sense that it is guaranteed to 
find all admissible fixture designs for an arbitrary polygonal 
part silhouette and to identify the optimal fixture relative to an 
arbitrary quality metric. The algorithm does not consider out-of- 
plane forces or motions; however, we view this planar result as 
an essential component of a larger algorithm that solves the 3-D 
fixture design problem by treating the planar and out-of-plane 
constraint problems separately. This approach is analogous to 
the widely used 3-2-1 fixture design heuristic, and appears to be 
applicable to a broad class of man-made parts. 

I. INTRODUCTION 

OST automated manufacturing, assembly, and inspec- M tion operations require fixtures to locate and hold parts. 
Given part shape and desired position and orientation, fixtures 
are usually custom designed by manufacturing engineers and 
machinists. Although there are a few general guidelines and 
a number of studies, systematic algorithms for automatically 
designing fixtures based on CAD part models are still lacking 
[ll, P I .  

This is partly due to the uncountable set of alternative fixture 
designs that must be considered in the general case. One way 
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to reduce the number of alternatives is to limit consideration 
to a small set of components that must be located on a regular 
lattice structure. Such modular fixturing systems also have the 
advantage of allowing rapid set-up and changeover for new 
parts, precision locating on a tightly toleranced lattice, and a 
reduced fixture inventory comprised of re-usable components 
VI .  

The concept of modular fixturing using a family of inter- 
changeable components was originally developed in England 
during World War 11, and has resulted in a variety of commer- 
cially available modular fixturing systems [4]. These systems 
typically include a square lattice of tapped and doweled holes 
with spacing toleranced to zt0.0002 in and an assortment of 
precision locating and clamping elements that can be rigidly 
attached to the lattice using dowel pins or expanding mandrels. 
Although the lattice and set of modules greatly reduce the 
number of alternatives, designing a suitable fixture currently 
requires human intuition and trial-and-error. Designing a new 
fixture can be time consuming. Furthermore, if the set of 
alternatives is not systematically explored, the designer may 
settle upon a suboptimal design or fail to find any acceptable 
design. 

In this paper we present an algorithm for automatically 
designing a class of modular fixtures. These fixtures constrain 
all motion of a part in the support plane. Constraint is provided 
by four point contacts and does not rely on friction. Each 
fixture in this class uses three round locators, each centered on 
a lattice point, and one translating clamp that must be attached 
to the lattice via a pair of unit-spaced holes, thus allowing 
contact at a variable distance along the principle axes of the 
lattice. We use the temfiel  (fixture element) to refer to either 
a locator or a clamp and the temfiture to refer to a geometric 
arrangement of three locators and one clamp on the lattice. 

An acceptable fixture design must satisfy several require- 
ments. First, it must fully constrain the part to prevent its 
motion. We require fixtures to provide form closure, which 
is a kinematic constraint condition that prevents all motion 
[5]. In addition to constraining the part, the fixture must not 
interfere with certain geometric regions of the part, perhaps 
due to cosmetic surfaces or the need to retain clearance for 
grasping, machining, assembly, or other operations. Thus we 
define geometric access constraints, which define regions of 
points that must remain free of fixture components. With these 
requirements in mind, we say that a fixture is admissible 
if it provides form closure and obeys the geometric access 
constraints. In this paper, we further restrict our attention to 
fixtures where each fixe1 makes point contact with only one 

1042-296W96$05.00 0 1996 IEEE 



32 LEEE TRANS 

linear edge of the part. Given a part as input, the algorithm 
efficiently enumerates all admissible fixtures and ranks them 
according to a user-definable scalar quality metric. 

The algorithm begins with a geometric transformation that 
expands the part edges by the radius of the locators; this allows 
us to treat the locators as points on the transformed edges. 
These edges are then trimmed to respect geometric access 
constraints. We define a locator setup as the combination 
of three locator positions and a part configuration such that 
the part contacts all three locators. The algorithm enumerates 
all locator setups; for each, it identifies the set of all points 
along the perimeter of the object where an additional contact 
would provide form closure constraint. This in turn allows us 
to identify all of the possible form-closure clamp locations 
for each locator setup: each clamp location defines a unique 
fixture design. After pruning this set of fixtures by checkmg 
for geometric violations such as the clamp body intersecting 
the part or other fixels, we rank the surviving admissible 
fixtures based on some scalar metric such as ability to resist 
an applied force without exerting large contact reaction forces. 
The resulting fixtures are then returned to the user. 

We believe this is the first modular fixture design algorithm 
that is complete in the sense that it is guaranteed to find an 
admissible fixture if one exists. It is essential to acknowledge 
that such a fixture does not always exist: for example, parts 
that are much smaller than the lattice spacing will have no 
available fixture design. Other parts for which no fixture exists 
are considered in [6]. 

This algorithm is guaranteed to find the optimal fixture. 
Since the algorithm constructs the set of all fixture designs 
possible for a given modular fixturing kit, the algorithm can 
score the constructed designs according to a user-supplied 
quality metric, sort the results, and return the fixture with 
the highest score. The contact-force analysis included in our 
implementation is one example of such a metric. 

There are a number of issues that are not considered 
by the algorithm. For example, out-of-plane motions and 
part deformations are both important considerations in some 
fixturing problems, and these are not addressed by our planar 
fixture design algorithm. However, the strong analysis and 
enumerative aspects of our algorithm make it well-suited for 
use as part of a larger procedure that synthesizes 3-D fixture 
designs for prismatic parts, which occur in a variety of man- 
made products. Limitations and possible extensions of this 
algorithm are discussed further in Section V. 

A. Example 
Fig. 1 shows an example. The part is shown on the left 

of Fig. l(a). This plastic housing is one-half of the case of a 
commercially available hot glue gun. We would like to design 
a fixture to hold this housing (the part) while assembling the 
gun. In Fig. l(b) the part boundary is represented as polygon, 
as are geometric access constraints that delineate regions that 
must remain clear of fixture components-in this case to allow 
the gun tip, trigger, and cord to be assembled with the part. 
The part has 28 edges, and the access constraints have a total 
of 20 edges. 
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Fig. 1. An example. (a) The part to fixture is shown at the left. (b) Polygons 
descnbing the p"t and geometnc access constrants (shown dashed) which 
must remain free of fixture components. (c) A modular fixturing lut from 
Qu-CO, Inc. (d) Our model of the fixture kit. Filled dots represent tapped 
holes, and open dots represent dowel holes. The dashed ou the  shows the 
clamp extension limit. 

A commercial modular fixtunng kit is illustrated in 
Fig. l(c), comprised of a precisely machined plate with 
alternating doweythreaded holes, a set of three round locators, 
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and a manually actuated clamp. In Fig. l(d) this kit is 
represented by a model of the plate, the locators, and the 
clamp. The clamp is modeled by a polygon delineating the 
space occupied by the clamp during normal operation; this 
includes the region swept as the handle is moved from the 
open to closed position. The clamp model also includes a 
polygon describing the shape of the clamp plunger, and the 
plunger travel limits. 

For this example, the algorithm returned 97 fixture designs 
in just over two minutes on a desktop workstation, sorting them 
according to a quality metric which examines the maximum 
contact force required to resist an arbitrary unit applied force. 
Fig. 2 shows three of the returned fixture designs. Note that 
all three fixture designs provide form closure and obey the 
geometric access constraints. 

If we consider a clockwise unit torque applied to the part, 
we see that the fixture in Fig. 2(a) is superior to the one 
in Fig. 2(c), where contacts A and B must exert very large 
contact reaction forces to resist the torque. Our implementation 
includes these considerations in the metric it uses to rank 
fixtures; see Section 111-F. Fig. 3 shows the design of Fig. 
2(a) assembled using the fixture kit. 

11. PREVIOUS WORK 

There is a substantial literature on fixturing and the related 
topic of grasping. These results may be roughly grouped into 
three categories: fundamental analysis of the existence of 
fixtures or grasps, analysis of a given fixture or grasp, and 
automatic synthesis of fixtures or grasp configurations. 

A. The Existence of Fixtures and Grasps 

The century-old definition of form closure captures the intu- 
itive function of a fixture [5]. A set of contacts provides form 
closure if infinitesimal part motion is completely constrained; 
equivalently, the set of frictionless contacts is able to resist 
arbitrary forces and torques on the part. This condition may be 
analyzed using the concept of a wrench, which is a generalized 
force that includes moment contributions [7]. In the plane, a set 
of wrenches provides form closure if they positively span R3. 

Reuleaux showed that at least four wrenches are necessary 
for form closure in the plane [5].  Recently, Markenscoff et al. 
showed that four wrenches are sufficient for any piecewise- 
smooth compact connected planar body, excluding surfaces of 
revolution [8]. For objects in 3-D space, it is known that seven 
wrenches are necessary for form closure [9], [lo]; Markenscoff 
et al. showed that seven wrenches are sufficient for polyhedra 
[81. 

The above proofs demonstrate the existence of form-closure 
fixtures where contacts may occur at arbitrary positions in 
space. In the case of modular fixtures, the locations of contacts 
are constrained by the modular fixturing kit. Mishra studied the 
problem under these constraints, and showed that a fixture can 
always be found for a rectilinear part as long as all edges have 
length of four or more lattice units [ 1 13. Zhuang et al. showed 
that for the modular fixture kit employed in this paper, there 
exist polygons of arbitrary size for which no fixture design 
exists [6]. 
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Fig. 2. Three admissible fixtures designed by the algorithm. In each, the part 
is fixtured by three round locators and one translating clamp aligned with the 
lattice. For this example, our implementation designed 97 fixtures in 129.4 s. 

B. Fixture/Grasp Analysis 

Given a fixture or grasp configuration, a variety of con- 
siderations may be applied to evaluate the suitability of the 
fixture or grasp for wke~&.-h& sectian, we review 
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Fig. 3. The assembled fixture of Fig. 2(a). 

past work on evaluating fixtures and grasps; some of these 
evaluation criteria are already embodied in our algorithm (such 
as the determination of whether or not the fixture provides 
form closure), while others would be appropriate to include in 
future extensions to the algorithm’s quality metric. 

Asada and By showed how to determine whether a given 
fixture design provides total constraint of a rigid body, as well 
as loading accessibility before clamping [12]. Our glue gun 
example is inspired by their example of a power-drill housing, 
and highlights the similarities and differences between the 
results. Our paper extends Asada and By’s analysis methods 
by providing an automatic design procedure that considers 
geometric access constraints and modular assembly constraints 
in addition to kinematic closure. However, our algorithm 
considers only three degrees of freedom. 

Several grasp quality measures have been proposed based 
on the smallest contact force necessary to resist applied forces 
[13], [14]. Such a metric can be defined as the solution to an 
optimization problem [15], [16] or geometrically as the radius 
of the largest sphere that can be embedded inside the wrench 
convex [ 171, [IS]. One subtlety is that the wrench space is not 
homogeneous, and one must take cas-e when comparing forces 
with torques. In a similar vein, Bausch and Youcef-Toumi de- 
veloped a method of evaluating the degree of motion constraint 
imposed by seven fixels contacting a three-dimensional rigid 
body [19]. The quality metric we describe in Section ID-F 
is similar to Bausch and Youcef-Toumi’s metric, except that 
our metric analyzes planar problems and explicitly considers 
expected task forces. Unlike some previous geometric quality 
metrics, our quality metric is not sensitive to the selection 
of a forceltorque scaling factor, which can be a somewhat 
arbitrary parameter. 

Other authors addressed task-specific requirements that must 
be satisfied by a fixture. Englert reported methods for assessing 
a fixture design’s susceptibility to part deformation, locator 
wear, and dynamic chatter during machining operations [20]. 
Sakurai later explored the relationship between fixture design, 
part tolerances, and part deformation in greater detail [21]. 

Sakmai also studied the relationship between cutting forces 
and clamping forces in fixtures that rely on friction for part 
restraint-particularly when top-clamps are employed. Lee 
and Cutkosky extended Sakurai’ s results by clarifying the 
relationship between a fixture with top clamps and the friction 
limit surfaces that were previously developed to study the 
motion of sliding planar bodies [22]. Kim further extended 
these results by considering whether or not expected force 
magnitudes would exceed clamp stress limits [23]. Other 
authors reviewed additional practical requirements of fixture 
designs [24], [25], [l]. The algorithm we report in this paper 
is complementary to these results; while we do not present 
an analysis of part deformation, tolerances, or maximum 
allowable clamp forces, it is reasonable to expect that these and 
other considerations could be folded into the quality metric that 
rates fixture designs. Ultimately, we envision that the synthesis 
methods of this paper could be combined with enhanced 
quality metrics to produce a larger system that will select the 
fixture that best satisfies this myriad of considerations. 

Scbh”m1s and Peshkin examined the problem of loading a 
given fixture using generalized damper compliant motions, and 
showed that in the absence of friction, a robust loading strategy 
exists for all deterministic fixture designs [26]. (The fixture 
designs returned by our algorithm are always deterministic in 
their sense.) Later work characterized the conditions where 
a fixture may be robustly loaded if friction is present [27]. 
Schimmels and Peshkin considered only infinitesimal motions, 
and did not analyze the effect of finite motions such as large 
rotations. Whether or not a fixture may be reliably loaded is an 
important aspect of fixture design that we do not treat in this 
paper; this consideration may be used either to discard fixtures 
that cannot be loaded robustly, or as a metric to compare 
fixtures based on their ease of loading. 

C. Fixture/Grasp Synthesis 

For a review of current practice in manual fixture design, 
see [28]. In addition to these methods, a number of techniques 
have been developed for automatically synthesizing grasp and 
fixture configurations. 

Mishra, Schwartz, and Sharir described an algorithm for 
synthesizing form-closure grasps on an arbitrary 2-D or 3-D 
object; the grasps returned by the algorithm may require up to 
six contacts for 2-D objects [29]. Nguyen gave an algorithm 
for finding a set of four (seven) independent regions on the 
boundary of a polygon (polyhedron) such that a frictionless 
contact applied to each region is guaranteed to provide form 
closure [30]. Such regions are useful because they allow for 
uncertainty in the part’s pose. For three frictional contacts in 
the plane, Ponce and Faverjon showed that comparable regions 
on a polygon could be found using linear optimization [31]. 
These results both allow contacts at arbitrary points in space, 
and do not consider the constraints imposed by a modular 
fixture kit. 

In the context of planning grasping strategies for lifting an 
object off a supporting surface, Trinkle and Paul identified 
jamming regions on an object’s boundary, given three point 
contacts [32]. These jamming regions are analogous to the 
form-closure clamping regions produced by our force-sphere 
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analysis, in that they identify portions of the object boundary 
where an additional contact would lead to a force-closure 
condition. The form-closure analysis presented in this paper 
differs from Trinkle and Paul’s construction in that it applies 
to all possible arrangements of contact normals, while Trinkle 
and Paul’s construction addresses the special case where two 
of the contact normals are parallel. 

In the specific context of fixturing, Mani developed a 
method for designing planar fixtures based on Reuleaux’s 
rotation center analysis techniques [33]. Given a polygonal part 
shape, Mani’s procedure identifies all topologically equivalent 
fixture designs. However, his procedure does not accurately 
consider the fixel shape or the mapping of the fixture design 
onto a modular fixture plate. Chou et al. developed a procedure 
that designs fixtures for prismatic parts using screw algebra, 
geometric heuristics to place locators at positions that allow 
easy loading of the part, and a rotation center analysis to 
place clamps [34]. As with Mani, they did not consider the 
constraints imposed by a modular fixture kit. Kim developed 
a procedure that designs fixtures using top clamps [23]. The 
procedure focuses primarily on placing the top clamps and 
estimating the required clamping force; lateral locators are 
only allowed on user-specified orthogonal datum surfaces, 
which are assumed to be aligned with the hole grid. Our work 
complements Kim’s result, since we generate all possible lo- 
cator placements for an arbitrary part shape but do not address 
top clamping. Kim also developed a procedure for designing 
fixture setups using a vise. In related work, Hayes and Wright 
developed an expert system for planning machining operations 
[35], [36]. This system analyzed the interaction between 
machined features and constructed a sequence of setup plans 
that would allow a part to be machined from raw stock while 
avoiding feature interaction problems (such as drilling into a 
slanted surface). This system employed a simplified feature- 
based geometric analysis to design fixtures; it may be possible 
to extend the scope of this high-level planning system by 
including the more detailed geometric analysis presented in 
this paper. Finally, Englert and Sakurai also reported fixture 
design methods based on geometric heuristics [20], [21]; these 
methods do not have the generality of the algorithm presented 
here. 

Recently, Wallack and Canny reported an algorithm for 
designing a class of modular fixtures with four round loca- 
tors on a split lattice that can be closed like a vise [37]. 
Their algorithm, like ours, takes the part shape as input and 
enumerates all combinations of fixture elements that achieve 
form closure. Also, like ours, their algorithm sweeps edges 
to compute contact conditions and runs in polynomial time. 
However, the algorithms differ in the construction of the fourth 
fixel location. In the case of Wallack and Canny’s split vise, the 
third fixel’s (x, y) position may not be known until the location 
of the fourth fixel is chosen, at which time the part pose may 
be determined. Consequently their algorithm includes another 
nested loop instead of the direct force-sphere construction we 
employ. Further, their algorithm does not require a check for 
interference between the part and the clamp body. The net 
result of these differences is that their algorithm entails one 
less factor of n and one more factor of d in its asymptotic 

complexity (see Section ZII-G), while providing the additional 
capability of designing fixtures with two translating fixels 
instead of just one. 

111. THE ALGORITHM 

A. Problem Statement 

Assumptions. 
Parts and locators are rigid solids. A part can be rep- 
resented with a simple polygon, and locators can be 
represented as circles with identical radii less than half 
the grid spacing I (GZ on an alternating grid). Thus we 
do not have to check collisions between locators. 
All contacts are ideal unilateral point constraints. Our 
analysis treats these contacts as frictionless: the fixtures 
do not depend on any minimum level of friction. 

The algorithm only generates fixtures where each fixel 
contacts the interior of a single part edge. Thus we neglect 
fixtures where a fixel contacts a part vertex or multiple part 
edges. Further, we treat all fixtures that can be mapped onto 
each other through translation and/or rotation as equivalent, 
and only generate one fixture from each equivalence class. 

Input. 
Polygonal part boundary, provided as a list of vertices. 
A set of geometric access constraints, provided as a list 

Height and width of the fixture plate lattice. 
Locator radius. 
Description of the clamp. This includes a polygon de- 
scribing the shape of the clamp body, locations of the 
clamp mounting holes, a polygon describing the shape 
of the clamp plunger, and its mirdmax travel limits. The 
tip of the plunger is assumed to be a circle of the same 
radius as the locators. 
A quality metric. This is a function that accepts a fixture 
design and returns a scalar quality measure. 

of polygons defined in the part coordinate frame. 

output. 
A list of all admissible fixtures for the part, sorted in order 

of quality. 

B. Overview of the Algorithm 

output by performing the following steps. 
Given the input described above, the algorithm produces its 

1) The input is transformed by growing the part such that 
the fixels can be treated as ideal points, and the fixture 
plate lattice is assumed to be infinite. 

2) All possible candidate fixture designs are constructed. 
This is accomplished by enumerating the set of possible 
locator setups, and then passing the result to a form- 
closure analysis routine that constructs all of the possible 
abstract clamp locations for each setup. Each locator 
setup and clamp location specifies a unique fixture. 

3 )  The set of candidate fixtures are then filtered to remove 
those that do not obey clamp travel limits, cause colli- 
sions with the clamp body or plunger, or do not fit on 
the finite fixture plate. 

4) The resulting fixtures are scored according to the user- 
specified quality metric, and then sorted in order of 
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decreasing score. The algorithm returns the sorted Pist 
of fixtures. 

The following sections will explain each of these steps in 
detail. 

C. Transforming the Input 

The first step of the algorithm is a transformation that allows 
us to treat round locators as ideal points. This is accomplished 
by forming the Minkowski sum of the polygonal part boundaq 
and the circular fixel shape; fixturing the resulting expanded 
boundary with ideal points is then equivalent to fixturing the 
original part boundary with finite-radius locators. Thus it is 
sufficient to consider points on the edges of this expanded 
boundary as candidate positions for locators. 

Although the expanded boundary has rounded edges corre- 
sponding to contacts between a locator and an object vertex, 
we consider only the linear components of the expanded 
boundary. We similarly grow the constraint regions by the 
fixel radius, and then restrict our attention to the subset of 
the expanded part edges which do not intersect the grown 
constraints. This will assure that the fixels of all generated 
fixtures will avoid the access constraint regions. This results 
in a list of rigidly attached but possibly unconnected linear 
edges. See Fig. 4. We are now free to translate and rotate this 
group of edges to bring edges into contact with lattice centers. 

D. Generating Candidate Fixtures 

We proceed to enumerate all possible fixtures. First, we enu- 
merate triplets of locators, identifying the part configurations 
consistent with each. Each combination of a locator triplet 
and an (x, y, 0) configuration specifies a locator setup. After 
enumerating all possible locator setups, we identify the set of 
all clamp positions that provide form closure. 

1) Enumerating Locator Triplets: To enumerate all locator 
triplets, the following steps are repeated for all combinations 
of three edges, where either all three edges differ, or two of 
the three edges are identical. For example, (el, e5, e z )  and 
(e4,  e7, e4) are both valid edge combinations. Order is not 

,~ 

significant, so there are ("; ) + 2 (2 ) such combinations for 

n edge segments. The se'cond comb$atorial is multiplied by 
two because there are two valid triples for every choice of two 
distinct edges. Note that we need not consider combinations 
with three identical edges, since a part with three locators on 
one edge cannot be held in form closure. 

Given a combination of three edges, ( e a ,  ea, e,), we can 
assume without loss of generality that e, makes contact with 
a locator at the origin of the lattice. By translating and rotating 
e, about the origin, e h  sweeps out an annulus centered on the 
origin, with inner diameter equal to the minimum distance 
between e,  and eb and outer diameter equal to the maximum 
distance between e, and eh. That is, for any orientation of 
e,, as we translate along the extent of e,, eb sweeps out a 
parallelogram. The union of these parallelograms as we rotate 
e, forms an annulus. To eliminate equivalent fixtures, we only 
need to consider the first quadrant of this annulus. See Fig. 5. 

We now consider each of these second locator positions in 
turn, and identify all possible positions for the third locator. 

Fig. 4. Transforming the input. (a) Growing the part by the fixel r a d "  
(b) After growing the constraints by the fixel radius. (c) The resultlng edge 
segments. 

If the first locator contacts e, and the second locator contacts 
eb, then a third locator in contact with e, must be painvise 
consistent with both e, and eb. The exact region swept out by 
e,  as we maintain contact with the first two locators is difficult 
to characterize. However, we can easily find an envelope that 
contains this region by independently considering each pair. 
That is, the possible locations for e, with respect to e, form 
an annulus around the origin, and the possible locations for e,  
with respect to eb form an annulus around the second locator. 
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Fig. 5. Identifying candidate locations for locator #2. (a) The set of points 
swept by edge e b ,  while e,  maintains contact with the origin. (b) The 
candidate locations for locator #2, after removing symmetries. Note that points 
on the y-axis must be excluded. 

Intersecting these annuli provides a conservative bound on 
the set of grid locations that simultaneously satisfy both 
constraints. 

We can further refine this bound by considering the an- 
gular limits for each annulus. This is accomplished by first 
identifying the angular limits of the part configurations that 
simultaneously contact the first and second locators, producing 
a [Omin,Omax] interval of reachable part angles. Then we 
transform this interval by adding the [Pmin, ,BmaX] interval that 

delineates the minimum and maximum angle attainable by a 
ray connecting e, and e,. The resulting [(BminSPmin), (emax+ 

Pmax)] interval describes the set of all possible angles between 
points on edge e, and e,, while e, and eb maintain contact 
with locators 1 and 2. This interval defines a sector of the 
eaec annulus; points outside this sector are unreachable by e,. 
A similar construction produces a sector of the ebe, annulus 
based on the @-interval corresponding to edges eb and e,. 
Intersecting these annular sectors provides a set of candidate 
locations for the third locator. See Fig. 6. 

each 
triplet of locators and associated contact edges, we must 
identify the set of consistent part configurations. This is 
accomplished by a configuration-space analysis that constructs 
the intersection points of edge/vertex-edge/vertex (ev-ev) 
contact equations. This calculation identifies intersection 
points between the ev-ev edges on the configuration-space 
obstacle corresponding to two-point contact situations. For 
example, if e,, eb, and e, are the edges of the part in contact 
with fixels vl, v,, and o, respectively, then the combinations 
e,v,-ebv,, e,v,-e,v,, and ebv,-e,v, all correspond to two- 
contact situations that have an associated one-dimensional 
locus of points in the (z,y,B) configuration space. Three- 
point contact is only possible at the intersections of these 
loci, so the set of part configurations where all three fixels 
are in contact may be found by solving for the roots of 
the parametric equations describing these intersections. This 
analysis is further discussed in Appendix A. 

There may be up to two solutions to these equations, corre- 
sponding to different poses of the part that permit simultaneous 
contact with the three chosen locators (see Fig. 7). In these 
cases, we generate two candidate locator setups, one for each 
pose. In certain geometric situations there are an infinite 
number of solutions (such as when all three edges are parallel); 
these cases are discarded because they' do not constrain the 
part to a unique location. 

3)  Enumerating Clamp ConJgurations: So far we have 
enumerated all possible three-edge combinations, all possible 
locator triplets for each edge combination, and all possible 
part configurations for each locator triplet. This has produced 
a list of all possible locator setups for the part. Next, we visit 
each setup and generate all of the possible clamp positions that 
provide form closure. Thus for each setup, we may generate 
several candidate fixtures, each with a different clamp position. 

To generate the set of form-closure clamp positions for a 
locator setup, we perform a constraint analysis on the force 
sphere, a unit sphere centered at the origin of the (F, , Fv, ~ / p )  
space of planar forces. 

This representation was previously described in [38]; see 
[39] for implementation details. This space represents both the 
direction and moment components of a line of force exerted in 
the plane. For example, Fig. 8 shows an example planar force 
and its corresponding point on the force sphere; the equations 
describing this mapping are presented in Appendix B. Note 
that if we were performing dynamic analysis, we would choose 
the part origin and p to correspond to the the part center of 
mass and radius of gyration; however, in our purely static 
analysis these may be chosen arbitrarily. 

2)  Identifying Consistent Part ConJgurations: For 



38 JEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2 ,  FEBRUARY 1996 

. . . . . . . . . . .  . . . .  . . . .  . . . . . . . . . .  

. . .  . .  

. . .  
. .  . . .  
. .  . . .  . .  

. . .  . .  . . .  

. . . . .  

'&" - . .  
. . . . .  

* .  

. .  . .  . .  
* .  . .  . .  

. .  . .  

. . . .  . . . .  
Fig. 7. Two poses of a part that permit simultaneous contact with 
locators. 

. . . . . . . . . .  
. . . . . . . . . . .  . . . . . . . . . .  
. . . . . . . . . . .  

(a) 

L x  ............... 

. . . . . . . . . . . . . . . . .  . . . . . . . . . .  . '.. 
_..^__ 

,- , 
. . .  

. . .  
. . .  . . . .  
. . . .  . . , .  . , .I 

. . I .  

. - \  . . . .  

*\ . 
. *  

. %. 

* . I  . .I 

. ., 

. I .  

. ,  . . . . . . . . . . . . . . . .  \ \  \ <  

% -  -1--.-_ - ~ ~ 

~. . . . . .  . .  . , : . - .  
. . . . . . . .  -: . . . . . . . . . . .  . . . . . . . . . .  
. . . . . . . . . . .  

(c) 

Fig. 6. Identifying candidate locations for locator #3. 

We treat each fixelledge contact as an ideal unilateral point 
constraint. Thus each fixe1 may resist motion by exerting a 
reaction force in the direction of the inward-pointing contact 
normal. Fig. 9 shows the set of points on the force sphere 
corresponding to the three contact normals of a typical locator 
setup. The convex-combination of these points is also shown; 

I 

Fig. 8. Mapping a line of force onto the force sphere. 

three 

Fig. 9. Constmcting the set of reaction forces that may be generated by a 
locator setup. Each contact normal is mapped onto the sphere; the resulting 
points define a triangle of possible reaction forces. 

I this triangle on the force sphere delineates the set of all total 
contact reaction forces that may be produced by combining 
forces from all three contacts. 

A fixture design provides form closure exactly when the cor- 
responding set of contact normals positively spans the entire 
force sphere. When this condition is satisfied, combinations of 
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contact reaction forces may produce an arbitrary total reaction 
force, thus opposing an arbitrary motion. Put another way, if 
the set of contact normals for a given fixture design span the 
force sphere, then all possible motions will violate at least one 
kinematic constraint. 

Given a set of three contact normals corresponding to a 
locator setup, we can directly construct the set of forces 
that would produce form closure if provided as a fourth 
contact normal. This is accomplished by forming the convex- 
combination of the three contact normals on the force sphere, 
and then centrally projecting this triangle onto the opposite 
side of the sphere. The resulting negated triangle delineates 
the set of all forces that will produce form closure. If we can 
find a clamp position with a contact normal that corresponds to 
a point strictly in the negated triangle, then this clamp position 
and the three locators will define a form-closure fixture. 

We can directly construct the set of clamp positions that 
satisfy this condition. We accomplish this by characterizing 
the set of all contact reaction forces that can be applied by 
a contact along the perimeter of the grown part. This set 
of forces is illustrated in Fig. 10. Note that the set of all 
possible contact forces corresponds to a “zig-zag” locus of 
points that encircle the force sphere. Fixel contacts along 
the edges of the polygon correspond to the vertical edges of 
the locus; note that as a force moves along an edge, only 
the torque component of its wrench will vary. Fixel contacts 
with the vertices of the polygon correspond to the diagonal 
locus edges. By intersecting the vertical locus edges with 
the set of possible form-closure forces constructed previously, 
we can identify the set of all available edge-contact normals 
that produce form closure for a given locator setup. We then 
map this set of contact normals back onto the grown part 
perimeter to identify the regions where a fourth contact point 
will produce form closure. Finally, we identify the set of 
possible clamp positions by intersecting the identified regions 
with the horizontal and vertical edges of the fixture lattice. 
This construction is illustrated in Fig. 11. 

E. Filtering the Candidates 
At this point the algorithm has enumerated all form-closure 

fixtures where the round fixels obey the geometric access 
constraints. The next step is to filter the candidates through 
several geometric tests. First, we determine the clamp location 
and check clamp travel limits. Next, we discard those fixtures 
where the clamp body or plunger intersects the part, the 
locators, or the access constraints. Finally, we attempt to fit 
the remaining fixtures on the finite fixture plate; fixtures that 
cannot be placed either horizontally or vertically are also 
discarded. 

F. Ranking the Survivors 
The final step of the algorithm is to rank the surviving 

fixtures according to the user-supplied quality metric. A user 
may then view the top fixtures and apply additional criteria 
to select a winner. 

Our implementation includes a default quality metric that 
favors fixtures that can resist expected applied forces without 
generating excessive contact reaction forces. Large contact 

Fig. 10. The “zig-zag” locus of all forces that may be exerted by contacting 
the part at a single point. The contact normals of Fig. 9 are shown for 
reference. This construction previously appeared in [38], and an analogous 
mathematical definition appeared in [29]. 

forces are undesirable because they may deform the part. 
The effect of fixture geometry on contact reaction force is 
illustrated in Fig. 12. In this figure, a part is held in two 
different fixtures, both of which provide form closure. Which 
fixture is better? The answer depends on the forces that will be 
exerted on the part. For example, if downward forces will be 
applied to the part, then fixture A is better than fixture B, since 
fixture B will develop large “wedging” forces between the 
fixels. On the other hand, if clockwise torques will be applied, 
then fixture B is superior, since fixture A must develop large 
contact reaction forces to oppose rotation of the part. 

As an example, we implemented a quality metric that allows 
the user to specify a list of expected forces on the part. These 
forces are represented by a list of force-sphere regions with 
associated magnitudes that could arise from operations such as 
machining, assembly, or pallet transfer operations. The quality 
metric scores each fixture by estimating the maximum contact 
reaction force required to resist the list of expected applied 
forces. 

The estimated maximum contact reaction force for a given 
fixture is calculated by visiting each force-sphere region in 
the applied force list, generating a discrete sampling of points 
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(d) 

Fig. 11. Constructing the set of form-closure clamp placements. (a) Negating 
the set of possible contact reaction forces. (b) Intersecting the result with 
the vertical edges of the zig-zag locus. Contacts corresponding to the bold 
arcs will produce form closure. (c) The bold segments indicate the set of all 
edge-contact points that produce form closure. (d) Possible clamp placements. 

in the region, computing the maximum contact reaction force 
required to resist each point, scaling the result by the associated 
magnitude, and taking the maximum of all the resulting contact 
reaction forces. 

Given a particular point p’ within a force-sphere region, the 
maximum contact reaction force may be constructed directly. 

. O . O . 0 . 0 .  . 0 . 0 . 0 . 0 .  

Fig. 12. Two iixture designs. (a) FEture A and (b) Fixture B. Which one is 
better? The answer depends on the forces that are expected. 

First the negation of the point -p’ is constructed. Since the 
four force-sphere points corresponding to fixe1 contact normals 
positively span the force sphere, the point -p’ must lie in a 
triangle formed by three of the normals, along an edge formed 
by two normals, or exactly coincide with one normal. In each 
of these cases, -p’ may be expressed as a positive linear 
combination of the corresponding normals, and the associated 
scaling factors may be computed directly. These scaling factors 
detennine the magnitude of each contact reaction force in the 
force space; projecting the resulting scaled vector onto the 
[F,, FYI plane produces the contact reaction force in the real 
space. The maximum contact reaction force then corresponds 
to the force with the largest magnitude @-. 
G. AZgorithm Complexity 

An asymptotic upper bound on the running time of the 
algorithm can be derived as follows. For the given polygonal 
part, let n be its number of edges and d the length of its 
maximum diameter (in units of lattice spacing). The enu- 
meration considers O(n3) triplets of edges. For each triplet 
of edges, there are O(d2)  locations for the second locator 
since we consider a sector of an annulus of diameter no 
greater than the part, and similarly for each pair of locators, 
there are O(d2) locations for the third locator. Once the part 
pose is determined by three locators, the number of possible 
clamp locations is bounded by its perimeter: O(nd) .  Thus the 
maximum number of possible fixtures is O(n4d5). Checking 
for unwanted collisions can be accomplished in O ( n )  time for 
each fixture, since the number of clamp edges is constant. If 
the quality metric can also be evaluated in O(n) time or less 
for each fixture, then the total running time for the algorithm 
is O(n5d5).  

IV. IMPLEMENTATION RESULTS 
We have implemented the algorithm in Common Lisp on 

a Symbolics XL-1201 Lisp Machine, and run the program on 
several example problems. One example is shown in Fig. 1; in 
this problem the part has 28 edges, and the maximum diameter 
of the part is 5.3 in. The geometric access constraints are 
described by three polygons with a total of 20 edges. The 
fixture plate is an 18 x 18 array of alternating dowelhhreaded 
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holes, with a spacing of 0.75 in. The fixel radius is 0.25 in. 
The clamp and plunger have 23 and 4 edges, respectively. 
For this problem, the algorithm produced 23 grown part 
edges, 416 candidate fixtures, and 223 admissible fixtures; this 
computation took 294.4 s. 

Reviewing the output of the program suggests a number of 
simple heuristics for improving performance by eliminating 
poor fixtures early in the computation. We implemented some 
of these heuristics by providing three user-specified control 
parameters: 

maximum clamp angle: The maximum allowable angle 
between the clamp travel axis and the contact normal. 
Large clamp angles are undesirable because they can 
produce large contact forces, and may lead to binding 
of the clamp plunger. 
edge trim distance: After growing the part edges by the 
fixel radius and removing the segments that intersect 
the geometric access constraints, the resulting segments 
are further shrunk by this distance. This prevents fixel 
contacts very close to a part vertex; these contacts are 
undesirable because part vertices are weaker than edges, 
and may have inaccurate shape models due to chamfers 
or rounded comers. 
minimum clamp clearance: The minimum allowable dis- 
tance between the clamp body or plunger and the part or 
geometric access constraints. 

Each of these heuristics could be implemented through the 
quality metric by including penalties for large clamp angles, 
etc. Instead, our program includes these parameters in the 
construction procedure, thus avoiding the work required to 
build and analyze fixtures that would eventually be given 
poor quality scores. For our examples we chose 45" for the 
maximum clamp angle and 0.04 in (1 mm) for the edge 
trim distance and minimum clamp clearance. This produced 
a significant performance improvement, reducing the compu- 
tation time for the example in Fig. 1 to 129.4 s. With these 
parameters, the program produced 17 grown part edges, 162 
candidate fixtures, and 97 final fixtures. 

Examining a more complex example reveals a number 
of interesting points. Fig. 13 shows a housing used to hold 
electronic components; in production this housing is fabricated 
by casting a near-net shape part, and then machining the 
casting to produce the fine details. We would like to design a 
fixture to hold the part during these machining operations. We 
modeled the part as a polygon with 57 edges, with a maximum 
diameter of 9.3 in. A small constraint region was included to 
account for a cut-out on one wall of the part. Given this input, 
our program designed 5770 fixtures in 3.3 h. Fig. 13(b) of the 
figure shows the design with the highest score for our default 
quality metric; if we had specified expected machining forces, 
a different design would have produced the highest score. 

A number of issues spring to mind. First, do we really 
need to consider 5770 designs for this problem? Examining 
the list of designs reveals that many fixtures have very similar 
quality scores. This suggests that producing a subset of these 
designs may still lead to a very good fixture. From the above 
complexity analysis, we can observe that the large number of 

0 . 0 . 0 . 0 .  

. . . .  . .  

e .  

. O  

. . . e . . .  0 . 0 . 0 . . . 0 . .  

O . O . O . D . O . . . D . . . O .  

(b) 

Fig. 13. A complex example. (a) A near-net-shape part that requires final 
machining operations. (b) The optimal fixture design returned by the algo- 
rithm. This example suggests a number of possible extensions to the current 
algorithm; see the text for details. (c) The part in the fixture. 

returned fixture designs stems primarily from the part's large 
size relative to the fixture grid. If the grid were coarse, fewer 
designs would be p r o d l t e e d , + h q & s  execiition time. 



42 

2 
1 

lEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 1, FEBRUARY 1996 

2,277 626 0:41:15 
19,663 5,770 3:21:06 

TABLE I 

Our implementation accepts a grid-step parameter that allows 
the user to reduce the search space by effectively making 
the grid more coarse. For example, if grid-step = 2, then the 
algorithm only considers every other hole in the grid. Table I 
shows run time data for the electronic housing example of 
Fig. 13. 

These data show that if a coarse grid resolution is ex- 
plored, an initial set of fixture designs may be found in 
a matter of minutes, even for this complex example. As 
the search resolution is refined, the resulting fixture quality 
monotonically increases, since each successive computation at 
a finer resolution contains all of the fixtures designed at the 
previous resolution. This suggests a method of implementing 
the algorithm to support interactive design: First designs are 
generated on a coarse grid and reviewed, after which final 
designs are generated using a fine grid. This would allow 
designers to quickly obtain rough, “back of the envelope” 
fixture designs while considering the overall design picture, 
and then perform detailed fixture analysis later in the design 
phase. An even faster method of obtaining a single fixture 
design would be to run the enumeration using an arbitrary grid 
size, stopping as soon as an acceptable fixture is generated. 

Note that regardless of the method used to generate a 
rough fixture design, the globally optimal design will not 
generally be “close to” the best design returned by the coarse 
analysis. Instead, the optimal design may correspond to a gross 
topological change in the fixture layout. This is an artifact 
of the discrete nature of the analysis. Thus, the result of the 
coarse fixture analysis should be viewed as a lower bound on 
the fixture quality that can be attained, rather than as a close 
approximation to the optimum fixture. 

v. DISCUSSION AND FUTURE WORK 

The algorithm described in this paper has been developed 
to design fixtures assembled from modular components; this 
algorithm may also be used to design dedicated fixtures. Mod- 
ular fixturing components are somewhat more expensive than 
dedicated tooling, which makes dedicated tooling preferable in 
mass-production scenarios where multiple copies of the fixture 
are used for a large number of cycles. In this situation, the 
algorithm could be used to produce fixture designs which are 
fabricated with plain tooling plate. Since the major cost of 
modular fixturing components is in the precisely machined 
fixture plate, this scheme would produce cost-effective fixture 
designs. This approach has the additional advantage that 
prototype fixtures could be built from modular components 
for initial testing purposes. 

The electronic housing example described in Section IV 
showed the result of applying the algorithm to a complex part, 
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Fig. 14. Fixturing a hinge plate. (a) The hinge plate and the geometric access 
constraint required to add the second hinge plate. Because the geometric access 
constraint covers the entire right side of the hinge, no form-closure fixture is 
available. (b) A fixture that solves the problem by exploiting contact friction. 

and motivated the use of variable-resolution search to provide 
both rapid response and detailed analysis. This example also 
illuminates a number of deficiencies in the current algorithm. 
These deficiencies are as follows. 

The algorithm does not design supports to hold the part 
above the plate. This is required to allow holes to be 
drilled through the bottom of the housing. 
The algorithm does not synthesize top clamp locations. 
Some machining operations produce forces in the +s 
direction that tend to lift the part off the plate; these 
forces are only resisted by contact friction, which is 
not sufficient. In our housing example, lifting forces are 
generated by drilling and tapping operations. 

* The algorithm does not allow curved edges in the part 
model. The curved edges of the housing are represented 
by a series of linear segments. This increases the com- 
binatorics of the problem, reduces the accuracy of the 
estimated (IG, y, 6’) configuration, and causes some legit- 
imate fixture designs to be missed due to false vertices 
in the part model. 

* The algorithm does not synthesize redundant constraints. 
The fixtures designed by the algorithm are ideal three- 
point locating fixtures; these fixtures will provide unique 
and repeatable positioning of the part in the fixture. 
However, some situations will require additional contacts 
to adequately support the part. For example, the prototype 
version of the electronics housing was fabricated by 
machining it from a solid block of metal; this required 
substantial redundant support to prevent the thin walls of 
the part from chattering during machining operations. 
Some classes of parts fall outside the scope of the algo- 
rithm. For example, parts that are roughly cylinders lying 
on their side do not have the abundance of horizontal 
and vertical faces expected by this algorithm (e.g, aircraft 
landing gear). In these cases, fixturing strategies using 
V-blocks are common. 
The algorithm is limited to fixtures using four point 
contacts to constrain planar part motion. Certainly other 
fixture models can be imagined, for example including 
edge contacts or V-blocks. Catalogs from commercial 
suppliers typically include dozens of fixture modules 
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beyond the round locators and translating point clamps we 
consider. Often a combination of module types is required 
to fully constrain 3-D part motion. 

Some of these problems are relatively easy to address. 
For example, synthesis of admissible support and top-clamp 
positions is straightforward for parts that have horizontal top 
and bottom surfaces, such as the electronics housing. In this 
sense, this algorithm comprises an essential part of a larger 
algorithm that synthesizes 3-D fixture designs for prismatic 
parts. Extending the algorithm to include curved edges requires 
implementation of the required ev-ev contact and force-locus 
equations for curved edges; the rest of the algorithm remains 
unchanged. However, substantial work is required to extend 
the algorithm to automatically synthesize redundant supports 
or support a broader class of modules. We hope to address all 
of these issues in future work. 

Additional future work should focus on quality metrics. The 
quality metric presented in this paper is meant to provide an 
example of the kind of discrimination that is possible using the 
algorithm: this metric could be improved substantially. For 
example, the fixture in Fig. 2(a) was selected as optimal by 
our default quality metric. However, if the part is relatively 
soft, then it may pop out of the fixture due to deformation 
of the small edge contact at the upper right. In this case, the 
fixture shown in Fig. 2(b) is the better choice; this fixture was 
rated second-best by our default quality metric. One could 
imagine enhanced quality metricsthat automatically perform 
a detailed analysis of part deformations or tolerances, or even 
heat dissipation in welding scenarios. Since the algorithm 
produces a list of all of the available fixture designs, the 
optimal fixture will be found relative to any metric that is 
provided. 

Another possible extension of the algorithm would be to 
consider fixtures that exploit contact friction. The form-closure 
fixtures designed by the current algorithm provide the strongest 
possible constraint-part motion can only occur through de- 
formation. On the other hand, sometimes this condition is 
too strong. For example, consider the problem of fixturhg 
one plate of a common hinge, for the purpose of assembling 
the hinge. In order to allow the second hinge plate to be 
added to the assembly, one entire side of the hinge must 
be declared a geometric access constraint (see Fig. 14). This 
constraint is so large that no form-closure fixture is available. 
However, a variety of reasonable fixture designs may be 
applied to this task; Fig. 14(b) shows an example. This fixture 
relies on contact friction to prevent the part from moving 
toward the right. Extending our algorithm to include contact 
friction is straightforward. The primary change occurs in the 
form-closure analysis, where our current analysis of contact 
normals is replaced by an analysis of contact friction cones; see 
[38]-[40] for details. In addition, the enumeration procedure 
must be modified, since the part may be constrained with as 
few as two fixels when friction is present. 

Other extensions could focus on expanding the set of 
available planar fixture designs. For example, our algorithm 
avoids contacts with part vertices. We chose this restriction 
for reasons of practicality, since vertices are more susceptible 
to deformation and are often less precisely located than part 

edges. However, in some cases vertex contacts would be prac- 
tical, and extending the algorithm to include vertex contacts 
would increase the size of the solution space and possibly 
lead to better fixture designs for some problems. This could be 
accomplished by extending the enumeration to consider vertex 
contacts with fixture elements, invoking the necessary ve-ve 
and ve-ev c-space equations (some of which may be found in 
[39]), and including the diagonal edges of the zig-zag locus in 
the form-closure clamp placement analysis. 

APPENDIX A 
C-SPACE ANALYSIS 

This appendix presents the equations required to determine 
the (2, y, 0) configuration of a polygon in contact with three 
point fixels. Each polygon edge makes an edgehertex (ev) 
contact with a fixel; the possible placements of the polygon 
correspond to those placements where all three ev contacts are 
satisfied. This appendix provides a brief summary of topics 
developed in detail in [39]. 

The set of configurations that maintain a single ev contact 
has two degrees of freedom; these correspond to rotating the 
polygon about the fixel, or sliding the polygon laterally while 
maintaining the contact. Neglecting the edge endpoints and 
assuming a point fixel, this set corresponds to an unbounded 
surface that forms a helicoid in the (z,y,19) configuration 
space. Because the polygon edge is not infinitely long, there 
are local applicability constraints that delimit the reachable 
subset of this infinite surface. Including these applicability 
constraints is straightforward, as described in [39]. We omit 
this complication here for brevity, but all of these details are 
included in our implementation. 

The intersection of two such helicoidal surfaces forms a 
one-dimensional locus of points, which delineates the set 
of configurations that satisfy both of the corresponding ev 
contacts. This locus of configurations may occur in two forms, 
depending on the geometry of the corresponding polygon 
edges. If the polygon edges are parallel, then the surfaces 
will intersect in the (x, y, 0) space along lines parallel to 
the zy-plane, provided that the distance between the lines 
containing the edges is not larger than the inter-vertex distance. 
These lines describe the translational motion that is possible 
while maintaining both contacts. If the polygon edges are not 
parallel, then the surfaces will intersect along a curve that is a 
function of 0, describing the rotational motion that is possible 
while maintaining both contacts. We will refer to these as the 
parallel and nonparallel cases, respectively, and refer to the 
one-dimensional locus as an ev-ev edge. 

In the general case, the intersection of three ev c-surfaces 
will define a finite collection of points. These points will also 
correspond to the intersection of the ev-ev edges correspond- 
ing to each pair chosen from the three surfaces. Thus we can 
find these intersection points by first forming two of the three 
ev-ev edges defined by the three c-surfaces, and then finding 
the points where the ev-ev edges intersect. In the remainder 
of this appendix, we will review our method of representing 
ev-ev edges and of computing the intersection points of two 
ev-ev edges. 
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where 

where 

Fig 15 
Rm2, ql, yfJElr GIf2, and 
few lines show imtlal denvatlon steps for . f2 (6)  

The functions f,($) and f y ( O j  descnbing configuratcon obstacle edges that correspond to ev+v contacts The terms r,lmz, umlm2, pmi, 
are constants that depend on the shape of the grown edges el ,  e2 and the positions of the fixels 01, w2 The first 

A. Representing EV-EV Edges 

Recall that ev-ev edges may correspond to parallel or 
nonparallel cases. In the parallel case, the ev-ev edge cor- 
responds to lines that are parallel to the zy-plane in the 
(x, y, 0) space. These may be represented by linear equations 

in x and y, with an associated 8 value that describes the 
elevation of the line above the zy-plane. The derivation of 
these parameters is straightforward. In the nonparallel case, 
the ev-ev edge corresponds to a cuwe that is a function of 
8; we represent this cmve by two scalar functions: f,(Q) 
and f g ( Q ) ,  which correspond to the x- and y-components of 
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Fig. 16. Parameters used in mapping a contact normal ray F to its corre- 
sponding point on the force sphere. The parameter d is a signed quantity, and 
assumes a negative value when the reference point is on the opposite side 
of the ray F. 

the curve, respectively. Fig. 15 shows the derivation of these 
functions. 

B. Intersecting EV-EV Edges 
Given a pair of ev-ev edges, there are three possible cases. 

ParalleVParallel. In this case both ev-ev edges correspond 
to the parallel case, so all three polygon edges must be 
parallel. Thus there are either zero or an infinite number of 
solutions. In either case, we return no intersection points. 
ParalleUNonparallel. The parallel-case ev-ev edge is de- 
fined by a collection of lines that lie on constant4 planes. 
For each such line, we compute x = fz(Oline) and y = 
fy(Oline) and then test to see whether the resulting (z, y) 
point lies on the line. We return the set of all resulting 
intersection points; since there are at most two lines, no 
more than two intersection points may be returned. 
NonparalleUNonparallel. Given ev-ev edges A and B, 
the points where A and B intersect will be defined by 
the 0 values which simultaneously satisfy the following 
equations: 

(1) f Z A  (0) = f Z B  (0) 

These 0 values are identified by finding the roots of (1) 
rearranged to f Z A  (0) - fzB (0) = 0, and then retaining all 
of the resulting 0 values that also satisfy (2). There may 
be zero, one, or two consistent 0 values; these are then 
supplied to the f Z A  (0) and fyA (0) functions to determine 
the corresponding x and y values. In certain degenerate 
situations it is possible to have an infinite number of 
solutions; this corresponds to the case where the two 
ev-ev edges are coincident. This case was observed by 
Farahat et al. [41]. 

Each of the above cases has an associated method for 
recovering the set of configuration-space points consistent with 
all three ev contacts. Typically this set will be comprised of 
up to two discrete points; in degenerate cases there may be an 
infinite set of consistent configurations. Since these degenerate 

situations do not constrain the object to a unique location, they 
are discarded by the fixture design algorithm. 

APPENDIX B 
FORCE-SPHERE ANALYSIS 

This appendix presents the equations required to represent 
contact normals on the force sphere, and explains how to 
construct the locus of all possible contact normals for a 
given polygonal object. This is a brief summary of material 
previously presented in [38]-[40]. 

Erdmann developed a method for representing and analyz- 
ing planar forces in the (Fz ,  Fy , ~ / p )  space of planar forces 
[40]. The torque component of the space is scaled by the 
body radius of gyration p to provide analogous units for 
each axis of the space, and to facilitate vector analysis of 
the body dynamics. Erdmann showed how to analyze systems 
of forces by forming the convex hull of the forces in the 
force space, and in particular focused on dynamic analysis of 
bodies experiencing multiple frictional contacts. In Erdmann’s 
method, a planar force is represented by a three-dimensional 
vector F = [F, Fy ~ / p ] ~ .  

Brost and Mason observed that to characterize the set of 
possible motions, it is sufficient to consider only the direction 
of the force in (F, , Fy , ~ / p )  space, neglecting its magnitude 
[38]. This led to two simplified representations of sets of planar 
forces: the dual-plane representation and the force sphere. Here 
we utilize the force-sphere representation, where forces in the 
(F,, Fz/, ~ / p )  space are projected onto the unit sphere centered 
at the origin. 

In order to construct the set of form-closure fixtures that 
are possible for a given locator setup, there are two key 
constructions used by the algorithm: the convex hull of the 
contact normals for the locator setup, and the “zig-zag” locus 
of all possible contact normals for the given part. 

For each construction, we first construct a set of force-space 
points that results from mapping particular contact normals 
onto the force sphere. This is accomplished by the following 
equation: 

(3) 

where 4 and d are defined in Fig. 16, and the normalize 
operator scales the vector to unit magnitude. Recall that since 
we are not performing dynamic motion analysis, p may be 
any positive value. 

Equation (3) gives us a method for mapping arbitrary 
contact normals onto the force sphere. To construct the convex 
hull of the contact normals for a locator setup, we first map 
each contact normal onto the force sphere, and then form 
oriented great-circle edges connecting all pairs of the three 
resulting points. Similarly, to construct the zig-zag locus of 
possible contact normals, we visit each polygon edge and map 
the contact normals corresponding to the edge endpoints onto 
the force sphere. Connecting the resulting pairs of force-sphere 
points will produce the desired vertical edges of the zig-zag 
locus. 
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