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Abstract— Learning-based approaches to robust robot grasp
planning can handle a wide variety of objects, but may be
prone to failure on objects with subtle geometry. We define an
“adversarial grasp object” as an object that is visually similar
to an original object but decreases the predicted graspability
resulting from a robot grasping policy. We study two algorithms
for synthesizing adversarial grasp objects under a grasp reli-
ability measure based on Dex-Net: 1) an analytic method that
locally perturbs vertices on antipodal faces, and 2) a deep-
learning based method using a variation of the Cross-Entropy
Method (CEM) augmented with a generative adversarial net-
work (GAN) to synthesize adversarial grasp objects represented
by a Signed Distance Field through more global geometric
changes. Experiments suggest that both algorithms consistently
reduce graspability. The analytic algorithm is able to reduce
graspability by 32%, 12%, and 32% on intersected cylinders,
intersected prisms, and ShapeNet bottles, respectively, while
maintaining shape similarity using geometric constraints. The
GAN is able to reduce graspability by 22%, 36%, and 17% on
the same objects.

I. INTRODUCTION

Adversarial images [1], [2], [3], [4] are modified images
that drastically alter the prediction made by a classifier
while applying minimal perturbation to the original image.
This paper defines “adversarial grasp objects,” an analog
of adversarial images in the domain of robust robot grasp-
ing. Similar to adversarial images, adversarial grasp objects
reduce graspability while retaining geometric similarity to
input objects.

Robust robot grasping of a large variety of objects can
benefit a diverse range of applications, such as the automa-
tion of industrial warehousing and home decluttering. Recent
research suggests that robot policies based on deep learning
can grasp a variety of previously unseen objects [5], [6], [7],
[8], but can be prone to failures on objects that may not be
encountered during training [9].

Adversarial image generation techniques involve perform-
ing constrained gradient-based optimization algorithms on
the image classification loss [1]. However, a central challenge
in applying these algorithms to deep grasping policies is
that grasping performance is not a differentiable function
of the network output. Instead, the grasp planned by a
policy is the result of scoring, ranking, and pruning a set
of grasp candidates for each object. To address this, we ex-
plore analytic methods and derivative-free optimization. We

1 Dept. of Electrical Engineering and Computer
Science; {dmwang, davidtseng, alanpusongli,
yiding.jiang, jmahler, goldberg}@berkeley.edu

2 Dept. of Industrial Engineering and Operations Research;
1,2 The AUTOLab at UC Berkeley (automation.berkeley.edu)
*Authors contributed equally to this work

Original Object Analytical Algorithm CEM + GAN

Fig. 1: Original objects vs. adversarial objects. The most robust 25 of 100
parallel-jaw grasps sampled on each object are displayed as grasp axes
colored by relative reliability on a linear gradient from green to red. Top:
Results from running an analytic algorithm on a dodecahedron mesh for 64
iterations, and a plot of the number of antipodal faces vs. the number of
iterations of the algorithm. Bottom row: Results from applying an analytical
algorithm and the CEM + GAN algorithm on a synthetically generated
intersected prism.

present two algorithms for synthesizing adversarial objects:
an algorithm that modifies objects by perturbating vertices on
antipodal faces subject to geometric constraints to maintain
similarity to the input object, and an algorithm for synthe-
sizing adversarial 3D object models using 3D Generative
Adversarial Networks (GANs) [10] and the Cross Entropy
Method (CEM) for derivative-free optimization. The second
algorithm extends recent advances in GANs to synthesize
a 3D Signed Distance Function (SDF) representation for
objects that minimizes the quality of available grasps. This
paper contributes:

1) A formal definition of adversarial grasp objects.
2) An analytical algorithm to synthesize adversarial 3D

objects for grasp planning from a given 3D object
by performing constrained perturbations of vertices on
antipodal faces.

3) A deep learning algorithm based on the Cross Entropy
Method (CEM) for derivative-free optimization and
deep Generative Adversarial Networks (GANs) that
uses an SDF representation of 3D objects to generate
a distribution of adversarial objects that look similar
to objects from a prior distribution.



4) Experiments studying adversarial grasp objects of sev-
eral categories (bottles, intersected cylinders, and inter-
sected prisms) generated by the two algorithms for the
Dexterity Network (Dex-Net) 1.0 robust grasp planner,
which plans parallel-jaw grasps based on a robust
quasi-static point contact model [11].

II. RELATED WORK

Adversarial Images. Adversarial images [1], [2], [3],
[4] are inputs with a small added perturbation that can
change the output of an image classifier, and the problem
of finding adversarial images is typically formulated as a
constrained optimization problem that can be approximately
solved using gradient-based approaches [1]. Yang et al.
developed a method to perturb the texture maps of 3D shapes
such that their projections onto 2D image space can fool
classifiers [12]. We build on this line of research by studying
adversarial examples in the context of generating adversarial
3D objects for robotic grasping.

Grasp Planning. Grasp planning considers the problem of
finding a gripper configuration that maximizes the probability
of grasp success. Approaches generally fall into one of three
categories: analytic [13], empirical [14], and hybrid methods.

Analytic approaches typically assume knowledge of the
object and gripper state, including geometry, pose, and
material properties, and consider the ability to resist external
wrenches [13] or constrain the object’s motion [15], possibly
under perturbations to model robustness to sensor noise.
Examples include GraspIt! [16], OpenGRASP [17], and the
Dexterity Network (Dex-Net) 1.0 [11]. To satisfy the as-
sumption of known state, analytic methods typically assume
a perception system based on registration: matching sensor
data to known 3D object models in the database [18], [19],
[20], [21], [22], [23]. However, these systems do not scale
well to novel objects and may be computationally expensive
during execution.

Empirical approaches use machine learning to develop
models that map from robotic sensor readings directly to
success labels from humans or physical trials. Research in
this area has largely focused on associating human labels
with graspable regions in RGB-D images [5], [24], [25]
or using self-supervision to collect labels from successes
and failures on a physical system [6], [7]. A downside
of empirical methods is that data collection may be time-
consuming and prone to errors.

Hybrid approaches make use of analytic models to au-
tomatically generate large training datasets for machine
learning models [26], [27]. Recent results suggest that these
methods can be used to rapidly train grasping policies to
plan grasps on point clouds that generalize well to novel
objects on a physical robot [8], [9], [28]. In this paper, we
consider synthesizing adversarial 3D objects for the analytic
supervisor used to train these hybrid grasp planning methods.

Generative Models. Deep generative models map a sim-
ple distribution, such as a multivariate Gaussian distribution,
to a much more complex distribution, such as natural images.
Common deep generative models fall into likelihood-based

models (i.e., the Variational Auto-Encoder (VAE) [29] and
PixelCNN [30]) and likelihood-free models (i.e., various
formulations of Generative Adversarial Networks (GANs)
[10]). During training of a GAN, a discriminator tries to dis-
tinguish the generated samples apart from the samples from
the real data while a generator tries to generate samples to
confuse the discriminator. Generative models have also been
previously used in the domain of robot grasping, where Veres
et al. [31] used conditional generative models to synthesize
grasps from RGB-D images, and Bousmalis et al. [28] used
GANs for simulation-to-reality transfer learning.

On the other hand, applications of deep generative models
to 3D data are relatively under-explored. Some notable works
in this area include the 3D GAN work by Wu et al. [32],
which uses a GAN on the latent code learned by a variational
autoencoder to generate 3D reconstruction from an image,
and the signed distance-based, higher-detail object generation
by Jiang et al. [33], where the low frequency components and
high frequency components are generated by two separate
networks. We expand upon previous efforts in this direction
by incorporating recent advances in GANs for 2D image
data.

III. PROBLEM STATEMENT

A. Adversarial Grasp Objects

Let X be the set of all 3D objects. Let π be a robot
grasping policy mapping a 3D object x ∈ X specified as
a 3D triangular mesh to a grasp action u. In this work, we
only consider a parallel-jaw grasping policy. We assume that
the policy can be represented as:

π(x) , argmax
u∈U(x)

Q(x,u) (III.1)

where U(x) denotes the set of all reachable grasp candidates
on x, and Q is a quality function measuring the reliability or
probability of success for a candidate grasp u on object x.

We define the graspability g(x, π) of x with respect to π
as a measure of how well the policy can robustly grasp the
object. We measure graspability by the γ-percentile of grasp
quality [34]:

g(x, π) , Pγ(Q(x,u)) (III.2)

We then consider the problem of generating an adversarial
grasp object: a 3D object that systematically reduces gras-
pability under a grasping policy with constrained changes
to the input geometry. Let σ(A,B) for subsets A,B ⊂ X
be a binary-valued shape similarity constraint between the
two subsets of objects. We study the following optimization
problem, which defines an adversarial grasp object x∗:

x∗ = argmin
x∈X

g(x, π) subject to σ({x}, S) = 1 (III.3)

where S ⊂ X is a subset of objects that the generated object
should be similar in shape to.



B. Robust Grasp Analysis

In this paper, we optimize adversarial examples with
respect to the Dexterity Network (Dex-Net) 1.0 grasping
policy [11]. In this setting, the action set U(x) is a set of
antipodal points on the object surface that correspond to
a reachable grasp, where a pair of opposite contact points
v1, v2 are antipodal if the line between the v1, v2 lie entirely
within the friction cones [11]. The quality function Q
measures the robust wrench resistance, or the ability of a
grasp to resist a target wrench under perturbations to the
object pose, gripper pose, friction, and wrench under a soft-
finger point contact model [9].

When calculating g, both the reward and policy are based
on the Dex-Net 1.0 robust grasp quality metric and the
associated maximal quality grasping policy. Within the Dex-
Net 1.0 robust quality metric, Q(x,u) is defined as:

Q(x,u) , Eu′∼p(·|u),x′∼p(·|x)[R(x′,u′)] (III.4)

where p(u′|u) and p(x′|x) denote distributions over possible
perturbations conditioned on x and grasp u, and R represents
a measure of grasp quality if the grasp is executed exactly as
given; that is, executed with zero uncertainty in object and
gripper pose. In this case, we use the epsilon metric by Fer-
rari and Canny with a soft-finger point contact model [35].

To calculate g(x, π) in practice, both the expected value
over the distributions of object and grasp pose p(x′|x) and
p(u′|u) and the γ-percentile are calculated using sample
estimates [36]. To do this, we first uniformly sample a
constant number of antipodal grasps across the surface of the
object. We then approximate the robustness for each grasp by
sampling perturbations in object and gripper pose and taking
the average grasp quality over all sampled configurations.

The empirical robust grasp quality is:

Q̂(x,u) =
1

N

N∑
i=1

R(xi,ui) (III.5)

where {ui}Ni=1, {xi}Ni=1 are i.i.d. samples drawn from
p(u′|u) and p(x′|x) respectively.

The empirical graspability ĝ(x, π) is estimated by taking
the discrete γ-percentile of Q̂(x,u) for all sampled grasps.

IV. ANALYTICAL METHOD: CONSTRAINED VERTEX
PERTURBATION

We consider an analogous approach for modifying an
existing 3D triangular mesh x ∈ X to decrease the gras-
pability of x. Let the mesh x be specified by a set of
vertices V = {v1, v2, . . . vn} ⊂ R3 and a set of faces
F = {f1, f2, . . . fm}, where each face fi is the triangle
defined by three distinct elements of V . Also, let Fa =
{(fi, fj), . . . (fp, fq)} be the set of pairs of antipodal faces,
and let the unit normal of face fi be denoted by ni ∈ R3.
Finally, let the antipodality angle ϕ between two faces be
defined as ϕ(fi, fj) = arccos(−ni

Tnj).

A. Case Study: Simple Shapes

Dex-Net 1.0’s graspability metric specifically considers the
robustness of a parallel jaw grasp, which requires antipodal
point pairs and can be susceptible to small pose varia-
tions. Thus, we consider the following iterative algorithm
for analytically perturbing vertices to reduce the number
of antipodal point pairs. Intuitively, we are attempting to
decrease |Fa|, the number of antipodal faces, by maxi-
mizing ϕ between all antipodal faces. In each iteration,
we compute Fa. For each vertex v of each face in Fa
(e.g., all vertices incident to a face in Fa), we consider
perturbations in directions defined byW , a set of unit vectors
{w1,−w1,w2,−w2,w3,−w3}, where w1, w2, and w3

are randomly selected and orthogonal, forming a basis for
R3. The intuition is to search along all three directions by
adding both a positive and negative perturbation. We then test
perturbations v′ = v + δw for each w ∈ W , where δ ∈ R+

is a constant. We select the v′ that maximizes
∑
i ϕi, the

sum of the antipodality angles between all antipodal pairs
in Fa that contain a face that is incident to v. Results from
applying this algorithm to a sample dodecahedron mesh to
systematically decrease the number of antipodal faces can
be seen in Fig 1. The angle of the friction cone was set to
arctan(0.17) in this case study.

B. Sampling-Based Algorithm

The previous algorithm can be effective on simple meshes,
but because it has time complexity O(k ·m2), where k is the
number of iterations and m is the number of faces, it is less
feasible to run this on very complex meshes with thousands
of faces and vertices. Thus, we propose a sampling-based
version of the above algorithm to avoid the overhead of
computing the full set of antipodal faces. Consider the
same mesh x as above. We want to perturb vertices while
constraining the movement such that the surface normals
of adjacent faces do not deviate by more than some angle
α. This corresponds to the shape similarity constraint σ in
Equation III.3, and in this case, S = {x}, the original object
itself.

In each iteration, we sample a pair of antipodal faces fa
and fb, where a, b ∈ {1, 2, . . .m}. We then randomly sample
one of the vertices vk of fa and fb. Let I ⊂ {1, 2, . . . n}
denote the set of indices of the faces adjacent to vk. Again,
we consider a set of 6 directions W sampled using the pro-
cedure described above, and for each direction w ∈ W , we
compute the perturbation δw ∈ R+ such that the antipodality
angle ϕ between faces fa and fb is maximized subject to
the constraints that cos−1(ni

Tn′i) < α for all i ∈ I, where
n′i ∈ R3 denotes the unit surface normal of face fi after
moving vertex vk to vk + δww. Then, we take the minimum
perturbation δw found along each of the 6 directions as
the actual perturbation. The algorithm runs for a number of
iterations until we observe no further empirical improvement
in decreasing graspability. By constraining the perturbations,
the algorithm attempts to maintain local similarity of the
region of perturbation while decreasing the graspability.



V. DEEP LEARNING ALGORITHM: CEM + GAN

An alternative approach for the problem of generating
adversarial grasp objects is to use a data-driven approach to
learn a distribution over objects X and extract adversarial
grasp objects by sampling from it. As opposed to the
analytical algorithm, which generates an adversarial version
of an existing object, the CEM + GAN algorithm takes as
input a set S ⊂ X of objects and can output of a set of
generated objects similar to those in S.

A. Deep Generative Models

One challenge in performing the optimization in Equation
III.3 is that the graspability function g(x, π) is not differ-
entiable; therefore, we need to perform the derivative-free
optimization by querying the function with different inputs
and adjust the model parameters based on the responses of
the function. Let pθ(x) be a probability distribution over X
parameterized by some θ ∈ Θ. Then, we can formulate a
similar objective to Equation III.3, but instead optimizing
for a distribution of objects that we want to be similar to
some prior subset S ⊂ X :

θ∗(π) = arg min
θ∈Θ

Ex∼pθ(·)[g(x, π)] subject to σ(Xθ, S) = 1,

(V.1)
where Xθ ⊂ X is the support of the probability distribution
pθ for some parameter θ ∈ Θ.

We propose a deep learning method using the cross-
entropy method (CEM) and generative adversarial networks
(GANs) to approach this optimization problem. Let Pθ be the
distribution over X induced by the model with parameter
θ and PS be the distribution empirically defined by S.
We then define the shape similarity constraint σ(Xθ, S) in
Objective III.3 as DKL(PS ||Pθ) < ε, where DKL is the
Kullback-Leibler divergence between two distributions, and
ε > 0 is a hyperparameter that can be controlled through
the sampling percentile γ (smaller γ means more similar
distributions). The GAN loss function implicitly enforces this
shape similarity constraint as it has been shown that at the
global optimum, the KL-divergence between the generated
distribution and the original distribution is zero [37]. We
note that the ε in the shape similarity constraint is necessary,
since GANs do not usually reduce the loss to 0 in practice.

B. Optimization via Resampling

The cross-entropy method (CEM) [38] is an adaptive
derivative-free optimization algorithm that has been widely
applied. We are interested in finding the distribution of rare
events that minimize a real-valued quality function q(x) over
X . To minimize graspability, we choose q(x) = g(x, π).

As a starting point, the GAN is initialized with a prior
distribution of objects S ⊂ X so that it generates objects
similar in shape. We start by training the GAN on this prior
set of objects. Then, in a resampling step, we use the GAN
to generate objects and take a subset of the objects with the
lowest graspability to use as training data to retrain the GAN.
We continue alternating between training and resampling
steps for a number of iterations.

Fig. 2: Example result after converting a mesh to an SDF. The general shape
of the mesh is preserved. While the conversion process to an SDF creates
some artifacts, the artifacts are much less significant than the ones resulting
from conversion to a binary occupancy grid. Left: Original mesh. Middle:
SDF after remeshing. Right: A sample cross section of the SDF.

Gupta et al. [39] apply similar techniques to optimize
functions over genetic sequences with a GAN by feeding
samples with desired properties back into the GAN to
generate more sequences with the properties. This suggests
that the techniques we use may be general and can potentially
be extended to other applications.

C. Signed Distance Generative Adversarial Network

Generative adversarial networks (GANs) [10] are a family
of powerful implicit generative models that have demon-
strated remarkable capabilities in generating high-quality
samples with relatively low inference complexity. Much of
the focus of the GAN community has been on generation of
realistic images.

A common representation for learning 3D geometry is a
binary 3D occupancy grid, in which the value of each cell
indicates whether the center of a grid block intersects with
the geometry. Due the cells being binary-valued, remeshing
occupancy grids may produce blocky artifacts.

Instead, we use the Signed Distance Function (also known
as signed distance field or SDF) [40] as an alternative
representation for generating 3D geometry. An example is
shown in Fig. 2. While SDFs do produce some artifacts
due to their finite resolution, they are not as noticeable
as the ones created by occupancy grids. SDFs are widely
used in the computer vision community for applications such
as rendering and segmentation, and in 3D applications for
collision checking. The SDF of a closed object x with a
well-defined inside and outside at point v can be given as:

f(v) =

{
d(v, ∂x), if v ∈ x
−d(v, ∂x), if v 6∈ x (V.2)

where ∂x denotes the boundary of x, and d is the Euclidian
distance from the closest boundary to a point, and can be
defined using the point-to-point version as

d(v, ∂x) := inf
w∈∂x

d(v, w) (V.3)

We draw on techniques used in Spectral-Normalization
GAN (SNGAN) [41], which can generate high-fidelity im-
ages, and apply them to SDF’s. We denote the standard
Gaussian noise vector as z ∈ R200 drawn from pz , the
empirical distribution defined by training data as pdata,
the Generator as G : R200 →

[
−1, 1

]32×32×32
, and the

Discriminator as D :
[
−1, 1

]32×32×32 → R. For the training
objective, we use the hinge version of adversarial loss [37]



κ = 1.00 κ = 0.68 κ = 0.53 κ = 0.42

κ = 1.00 κ = 0.88 κ = 0.75 κ = 0.65

κ = 1.00 κ = 0.68 κ = 0.54 κ = 0.42

Fig. 3: Analytical Algorithm. We show the progression of an example from each dataset as we increase the surface normal constraint angle α: each row
(from left to right) shows the original object and then the perturbed versions using the surface normal constraint with α = 10, α = 15, and α = 20,
respectively. The metric κ is the mean noramlized graspability of the generated dataset for the level of α, where the graspability is the empirical 75th
percentile of samples from the grasp quality function. The rightmost column shows the histograms of the graspability of all the objects. The analytical
algorithm is able to decrease graspability on objects from all three datasets. The objects have been smoothed for visualization purposes with OpenGL
smooth shading.

as we empirically found that it stabilizes training. The GAN
objective is then

LdataD = −Ex∼pdata(·)[min(0,−1 +D(x))] (V.4)

LgenD = −Ez∼pz(·)[min(0,−1−D(G(z)))] (V.5)

LD = LdataD + LgenD (V.6)

LG = −Ez∼pz(·)[D(G(z))] (V.7)

VI. EXPERIMENTS

We run the two algorithms to minimize overall graspability
on two synthetic datasets as well as on the ShapeNet [42]
bottles category. To allow a fair comparison between our
two algorithms, we converted all three datasets to SDFs.
For the synthetic datasets, we used the process presented
by Bousmalis et al. [28] where they generated objects to
grasp in simulation by randomly attaching rectangular prisms
of varying sizes together at varying angles. The intersected
cylinders dataset consists of one large central cylinder with
two smaller cylinders randomly grafted onto it. To show
that the GAN also works on non-cylindrical objects, the
intersected prisms dataset is similar to previous dataset but
uses prisms instead: it consists of one central rectangular
prism with two other rectangular prisms randomly grafted
onto it. All three prisms have a wide distribution of sizes. The
bottle, cylinder, and prism datasets have averages of 1,391
vertices and 2,783 faces, 1,202 vertices and 2,400 faces, and
2731 vertices and 4739 faces, respectively, and have 479,
1000, and 1000 total objects, respectively. Examples from
each of these datasets are shown in Fig. 3.

In the following experiments, we set the angle of the
friction cone to be arctan(0.5). For the graspability metric
g(x, π), we chose γ = 75%: often, one of the top 25%
of grasps is accessible, so we choose to look at the worst
case from this set. Consider a set of generated objects
{x1, x2, . . . xn} ⊂ X from a prior dataset of objects. We de-
fine mean normalized graspability as κ = c· 1n

∑n
i=1 g(xi, π),

where c is a normalizing constant. We note that the objects
in the figures in the section have been smoothed for visual
clarity to demonstrate the behavior of the algorithms, but the
metrics represent the results of the objects without smooth-
ing. Meshes in all datasets have large numbers of vertices
and faces, and displaying all of them makes it difficult to
distinguish differences within and between algorithms.

A. Analytical Algorithm

We run the analytical algorithm for local perturbations of
vertices on antipodal faces on 100 objects from each of the
three datasets. We experimented with α values of 10, 15, and
20 degrees for the shape similarity constraint for maximum
deviation in surface normals described in Section IV-B. We
find that the analytical algorithm decreases the graspability
metric for all datasets. With a value of α = 10 degrees, the
mean normalized graspability is decreased by 32% on the
intersected cylinders dataset, 12% on the intersected prisms
dataset, and 32% on the ShapeNet bottles datset. At each
level of α, we observe that the objects from the prism dataset
have the highest graspability; we conjecture that it is difficult
to decrease the antipodality of large, flat prism surfaces
with only local perturbations. Sample object examples along
with their adversarial versions, the associated graspability



κ = 1.00
Sample from Original Dataset:

κ = 0.98
Sample from Episode 0:

κ = 0.78
Sample after Episode 3:

κ = 1.00
Sample from Original Dataset:

κ = 0.95
Sample from Episode 0:

κ = 0.64
Sample after Episode 4:

κ = 1.00
Sample from Original Dataset:
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Sample from Episode 0:

κ = 0.83
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Fig. 4: CEM + GAN Algorithm. The images on the left are example objects from the GAN output distribution as the resampling progresses. “Original”
means the original SDF dataset, “Episode 0” denotes the GAN trained on the prior dataset (the first GAN trained, or Episode 0), and “Episode n” denotes
the nth GAN trained excluding the first. The κ values are the mean normalized graspabilities over a set of 100 objects generated during the corresponding
stage in the training, where the graspability is the empirical 75th percentile of samples from the grasp quality function. The right image is the histogram
showing the overall distribution of the graspability metric (normalized to the mean graspability Episode 0) on the GAN output distribution as resampling
progresses. As the algorithm progresses through the episodes, the probability mass shifts towards lower graspability. The objects have been smoothed for
visualization purposes with OpenGL smooth shading.

metrics, and the distribution of graspability metrics before
and after applying the analytical algorithm are shown in
Fig. 3. Increasing α decreases the graspability at the cost
of similarity to the original object, corresponding to an
increasingly relaxed shape similarity constraint.

B. CEM + GAN Algorithm

We train the resampling GAN on the previously described
intersected prisms and cylinders datasets, as well as the
ShapeNet bottles category. All three datasets are prepro-
cessed into signed distance field format with stride 0.03125
after being scaled such that the entire set has bounding boxes
of approximately 1× 1× 1.

For all three datasets, we sample 2500 new objects and
keep 500, and train the GAN for 16000 iterations between
resampling steps. Resampling in all experiments rejects out-
put grids that produce non-watertight meshes, as producing
meshes with non-orientable faces, gaps, self-intersection, or
disjoint pieces is not desirable when generating a distribution
of 3D objects. Such outputs are possible because the GAN
does not explicitly enforce such constraints, but this rejection
rate is very low: for bottles, no grids were rejected in any
resampling iteration, and on the intersected sets, rejection
rate remained below 10% in all episodes.

Examples of objects from the GAN output distributions
and histograms showing the overall distribution of graspa-
bility over resampling episodes are shown in Fig. 4. After

3 resampling iterations on the intersected cylinders dataset,
the mean normalized graspability is reduced by 22% relative
to objects in the original dataset. Similarly, graspability is
reduced by 36% on the intersected prisms datset after 4
resampling iterations and by 17% on the ShapeNet bottles
dataset after 5 resampling iterations.

C. Shape Similarity

Experiments suggest that both the analytical and the CEM
+ GAN algorithms decrease the graspability metric, but in
different manners. The analytical algorithm maintains local
shape similarity through the constraints on surface normal
changes, while the GAN introduces geometric changes that
decrease graspability while maintaining shape similarity at
a more global level (e.g., generates a tapered bottle that
resembles a bottle but was not in the original dataset).

To quantify shape similarity, we use 1 iteration of Lapla-
cian smoothing on the generated objects from each of the
three datasets by both algorithms to minimize surface rough-
ness and measure the effect of smoothing on object graspa-
bility. The objects generated by the analytical algorithm use
α = 10 degrees for the surface normal deviation constraint.
The full results are shown in Table I. Before smoothing, the
mean normalized graspability for objects from the analytical
algorithm is 10% lower, 30% higher, and 15% lower than ob-
jects from the GAN on the intersected cylinders, intersected
prisms, and bottles datasets, respectively. After smoothing,



Dataset Graspability Before Smoothing Graspability After Smoothing
Analytical CEM + GAN Analytical CEM + GAN

Intersected Cylinders 0.677± 0.031 0.783± 0.011 0.959± 0.048 0.862± 0.031
Intersected Prisms 0.876± 0.036 0.577± 0.012 0.961± 0.047 0.777± 0.037
ShapeNet Bottles 0.682± 0.034 0.827± 0.012 0.980± 0.038 0.899± 0.033

TABLE I: Comparison of the normalized mean graspability (reported with 95% confidence intervals) of objects generated by both the analytical algorithm
and the GAN algorithm before and after Laplacian smoothing. After smoothing, the objects generated by the GAN have lower graspability metrics than
the corresponding objects generated by the analytical algorithm for all three datasets, which suggests that the GAN generates more global adversarial
geometries, whereas the analytical algorithm uses local surface roughness to reduce graspability.

Fig. 5: The left object is from the initial input prior distribution of intersected
cylinders, and the others are objects sampled from the GAN’s output distri-
bution when it is trained on this prior without spectral normalization. The
objects shown have been smoothed via Laplacian smoothing to emphasize
that the GAN produces significant structural changes rather than simply
adding surface roughness. However, this modified GAN also generates
objects that deviate more from the original dataset.

the mean normalized graspability of objects generated by
the GAN are lower by 10%, 18%, and 8% on the same
datasets. The mean graspability of smoothed objects from the
analytical algorithm is at least 95.9% of the original datasets
in all cases, suggesting that surface roughness accounts for
almost all of the decrease in graspability. Although the GAN
also introduces surface roughness (smoothing still increases
graspability in all cases), it appears to learn more global
geometric changes to decrease graspability.

D. Failure Modes

GANs are prone to mode collapse [43], the phenomenon
where a GAN can learns to only outputs one distinct ob-
ject regardless of the input. Furthermore, since resampling
decreases diversity of objects in the dataset due to similar
generated objects tending to have similar metric scores, com-
plete mode collapse tends to occur after enough resampling
episodes. We observed mode collapse by the 9th iteration on
all three datasets.

We experimented with several variations of the GAN ar-
chitecture and observed that removing spectral normalization
can lead to more diverse objects on the intersected cylinders
dataset. In this experiment, mode collapse does not occur
before the metric quality mean stops improving, reaching a
decrease of 83% from the original dataset. However, these
generated objects deviate quite significantly from the prior
dataset. Some examples are shown in Fig. 5.

VII. DISCUSSION AND FUTURE WORK

We introduce adversarial grasp objects: objects that look
visually similar to existing objects, but decrease the predicted
graspability given by a robot grasping policy. We present two
algorithms that generate adversarial grasp objects.

The analytical algorithm considers perturbations in ran-
domly sampled directions. We are experimenting with vari-
ants of the algorithm that choose perturbation directions more

Fig. 6: Results on a T-shaped prism with systematic vertex translation using
the directed rotation from the surface normal of one face to another. Left
plot: Number of antipodal pairs vs. number of iterations in the algorithm.
The antipodal rotation algorithm described in Section VII converges sooner
than the antipodal perturbation algorithm described in Section IV-A. The
antipodal rotation algorithm takes 0.21 seconds compared to 5.3 seconds
for the antipodal perturbation algorithm. Right column: Original object,
adversarial grasp object generated by the antipodal perturbation algorithm,
and adversarial grasp object generated by the antipodal rotation algorithm.

systematically: for a pair of antipodal faces, we can consider
the directed rotation from the surface normal of one face
to the other and apply the corresponding rotation matrix to
the vertices of each face in a manner that maximizes the
antipodality angle. We have some preliminary experiments
on simple objects and find that the algorithm is much faster
in terms of number of iterations and computation time. In
future work, we will extend this algorithm to more complex
objects. Preliminary results are shown in Fig. 6.

For the CEM + GAN algorithm, we find that overall, the
distributions tend toward thinner objects with fewer parallel
surfaces. For example, the resulting distribution of the GAN
trained on the bottle prior has primarily thin bottles with both
a conical upper portion instead of a cap or stem structure,
as well as a tapered main body. Additionally, the metric
models point contacts instead of area contacts, which can
be disproportionately affected by surface roughness.

In future work, we will explore extensions to different
gripper types and to suction grasps and evaluate adversarial
objects in physical robot trials.
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