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Abstract To address privacy concerns regarding digital video surveillance cameras,
we propose a practical, real-time approach that preserves the ability to observe ac-
tions while obscuring individual identities. In the Respectful Cameras system, peo-
ple who wish to remain anonymous wear colored markers such as hats or vests.
The system automatically tracks these markers using statistical learning and clas-
sification to infer the location and size of each face. It obscures faces with solid
ellipsoidal overlays, while minimizing the overlay area to maximize the remaining
observable region of the scene. Our approach uses a visual color-tracker based on a
nine dimensional color-space using a Probabilistic Adaptive Boosting (AdaBoost)
classifier with axis-aligned hyperplanes as weak hypotheses. We then use Sampling
Importance Resampling (SIR) Particle Filtering to incorporate interframe temporal
information. Because our system explicitly tracks markers, our system is well-suited
for applications with dynamic backgrounds or where the camera can move (e.g. un-
der remote control). We present experiments illustrating the performance of our sys-
tem in both indoor and outdoor settings, with occlusions, multiple crossing targets,
lighting changes, and observation by a moving robotic camera. Results suggest that
our implementation can track markers and keep false negative rates below 2%.
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Fig. 1 A sample video frame is on left. The system has been trained to track green vests such as
the one worn by the man with the outstretched arm. The system output is shown in the frame on
the right, where an elliptical overlay hides the face of this man. The remainder of the scene includ-
ing faces of workers not wearing green vests, remain visible. Note how the system successfully
covers the face even when the vest is subjected to a shadow and a partial occlusion. Please visit
”http://goldberg.berkeley.edu/RespectfulCameras” for more examples including video sequences.

1 Introduction

Since September 11, 2001, security concerns have led to increasing adoption of
surveillance systems, raising concerns about “visual privacy” in public places. New
technologies allow for the capture of significantly more detailed information than
the human eye can perceive. Surveillance technologies are additionally empowered
by digital recording, allowing footage to be stored indefinitely, or processed and
combined with additional data sources to identify and track individuals across time
and physical spaces. Robotic cameras can be servoed to capture high resolution
images over a wide field of view. For example, the Panasonic KX-HCM280 pan-tilt-
zoom camera costs under $750 and has a built-in web-server and a 21x optical zoom
(500 Mpixels per steradian). The applications of these surveillance technologies
extends beyond security, to industrial applications such as traffic monitoring and
research applications such as observing public behavior.

McCahill et al. estimate that there are approximately 4 million public surveil-
lance cameras deployed in the UK [35]. The U.S. has also deployed a number
of camera systems in cities such as New York and Chicago for public monitor-
ing [4, 37, 36]. Deployments of such large-scale government-run security systems,
in conjunction with numerous smaller-scale private applications, raise fundamental
privacy concerns.

In this chapter, we explore an approach we call “Respectful Cameras”, that allows
monitoring of activity but hides the faces of people who choose to wear recognize-
able markers such as hats or vests that are made available. The Respectful Cameras
system allows human actions to be observable so that people can monitor what is
going on (ie, at a construction site or airport terminal) for security or public rela-
tions purposes. We envision such a system being made widely available, as these
markers would be cheap, unobtrusive, and easily mass-produced. For example, we
could provide inexpensive hats of a particular color or pattern at the border of the
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space where cameras are present, similar to the respectful hats or leg-coverings that
are made available at the entrance of churches and synagogues.

Existing face and people tracking methods have difficulty tracking in real-time
under moving backgrounds, changing lighting conditions, partial occlusions and
across facial orientations. We investigate a new approach that uses markers worn by
individuals to simplify the quality of face or person detection required for obscuring
individual identity, providing a method for individuals to opt-out of observation.
These markers provide a visual cue for our system by having the features of the
marker such as color, size, and shape to be distinguishable from the background.
We use the location of the marker to infer the location of the faces of individuals
who wish to “opt-out” of observation.

Recent advances in computer processing have made our algorithms utilizing Ad-
aBoost and Particle Filtering feasible for real-time applications. Our approach learns
a visual marker’s color-model with Adaptive Boosting (AdaBoost), uses the model
to detect a marker in a single image, and finally, applies Particle Filtering to integrate
temporal information.

2 Related Work

Protecting the privacy of individuals has become increasingly important as cameras
become more ubiquitous and have greater capabilities, particularly resolution and
zoom. Examples of this interest includes The National Science Foundation (NSF)
funding of TRUST [1], a research center for security and privacy, and privacy has
been the subject of recent symposia such as Unblinking [2].

Changes in surveillance ubiquity and capabilities raise questions about the fair
balance of police power (the inherent authority of a government to impose restric-
tions on private rights for the sake of public welfare, order, and security) to monitor
public places versus the citizens’ freedom to pass through public spaces without fear
of government monitoring. According to Gavison, a loss of privacy occurs through
visual surveillance by the extent we are known by others and subject to their at-
tention [22]. He discusses our expectation that our actions are observable only by
those we see around us, and thus we can judge how we should act. Nissenbaum
describes how the high-resolution and zooming capabilities of cameras applied to
visual surveillance also violate the contextual expectations of how people will be
perceived in public [38]. This places the burden upon an individual to conduct him-
self or herself as if every move could be recorded and archived. Finally, it should be
noted that it is not just surveillance that threatens privacy, but also the ability to be
identified [49].

Researchers such as Hampapur et al. have analyzed the system architecture re-
quirements of surveillance systems and built such a system [25]. Chen et al. built a
system for people detection, tracking and recognition [11] using gait analysis, face
detection and face recognition. As visual privacy is a significant concern of such
systems, a number of researchers have explored how to integrate privacy systems
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into these surveillance systems [48, 56, 12, 10, 18]. Others such as Chinomi et al.
have evaluated different methods for obscuring people in video data [13]. Google
has started experimenting with automated face blurring in Google Street View [23].

The ability to find the faces or full bodies of people is necessary for automated vi-
sual privacy. Applicable methods include face detection [9, 51, 50, 8], face tracking
[15, 42], people detection [52], and people tracking [39, 53]. Unfortunately, these
methods have difficulty detecting and tracking in real-time for domains with partial
occlusions, arbitrary pose, changing backgrounds, and changing lighting conditions
[30, 55]. Alternatively, Background Subtraction methods, such as Gaussian Mixture
Models [31], can be applied to obscure foreground objects. These methods are gen-
erally not designed to disambiguate between different moving objects so that we
could obscure only the people of interest and leaving other objects such as moving
cars visible. However, work such as that of Senior et al. [47] uses object models
as a post-processing step to disambiguate between objects and compensate for oc-
clusions. Many Background Subtraction methods will eventually determine that a
stationary person is part of the background, which will cause the stationary person
to become unobscured. Also, these systems struggle with domains using robotic
cameras, as the system will not have a background-model for the new region, which
may contain people to be obscured. In contrast, because our system explicitly tracks
markers, it is well adapted for scenes observed by robotic cameras.

Approaches to object detection employ statistical classification methods in-
cluding AdaBoost [51, 40], Neural Networks [17], and Support Vector Machines
(SVMs) [41]. Rather than using the person as the feature, we track a visual marker
worn by the individual, and use a form of AdaBoost [20] to track the color of that
feature. AdaBoost is a supervised learning approach that creates a strong statistical
classifier from labeled data and a set of weak hypotheses, which poorly classify the
labeled data. Rather than conventional AdaBoost that provides a binary label, we
use Probabilistic AdaBoost [21, 32], which provides the probability of an input’s
label that we use in our Particle Filter.

When using AdaBoost for detecting objects, either pixel-based or region-based
features can be used. Pixel-based approaches such as ours use a set of features for
each pixel in the image, while region-based use features defined over a group of
pixels. Typical region-based approaches explore applying Haar wavelet features to
pixel regions [51, 7]. Avidan describes the use of a pixel-based method [6] where
each pixel’s initial feature vector contains the RGB values, as well as two histograms
of oriented gradients similar to those used in Scale Invariant Feature Transform
(SIFT) features [34]. These SIFT features are commonly used for problems such
as the correspondence between images or in object detection. Rather than incorpo-
rating gradient information, our pixel-based approach uses multiple color-spaces as
our feature vector.

The research community has also investigated the use of skin color as a mecha-
nism for face detection. One common approach is verifying if each color satisfies a
priori constraints [33], another is performing machine learning [16] to model face
color. Others use multivariate Gaussians [54, 3] and Gaussians Mixture Models [24]
to represent the face colors. Most approaches use a color space other than RGB
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such as Hue, Saturation, Value (HSV) or YCrCB, but in contrast to our work, few
use more than a single colorspace. It is also common to use pixel color as a pre-
processing step to prune out image regions before using a more powerful intensity-
based face detector [54]. As these systems evolve and are used in industry, it is
important that these systems are trained over a wide variety of races and skin-tones
so that the system does not work for some, and not for others.

Sharing our motivations of robust detection, the Augmented Reality community
also simplifies object detection with visual markers for tracking and calibrating.
Zhang et al. compared many of these methods [57]. Kohtake et al. applied visual
markers to simplify object classification to ease the User Interaction problem of
taking data stored in one digital device and moving it to another by pointing and
selecting physical objects via an “infostick” [29].

Tracking can be used with object detection to enhance robustness. One common
method of tracking, Particle Filtering [5, 44], is used to probabilistically estimate
the state of a system, in our case, the location of a visual marker, via indirect ob-
servations, such as a set of video images. Particle Filtering provides a probabilistic
framework for integrating information from the past into the current estimation.
Particle Filtering is non-parametric, representing the distributions via a set of many
samples, as opposed to parametric approaches that represent distributions with a
small set of parameters. For instance, Kalman Filtering [27], represents distribu-
tions by a mean and a variance parameter. We choose Particle Filtering because our
observation model is non-Gaussian, and thus methods like Kalman Filtering will
perform poorly.

Perhaps closest to our approach, both Okuma et al. [39] and Lei et al. [32] also
use a probabilistic AdaBoost formulation with Particle Filtering [32]. However, both
assume a classifier per tracked-object (region-based), rather than classifier per-pixel.
As our markers use pixel-based color, we don’t need to classify at multiple scales,
and we can explicitly model shape to help with robustness to partial obstructions.
Okuma’s group applies their approach of dynamic weighting between a Particle
Filter and an AdaBoost Object Detector to tracking hockey players. Rather than
weighting, our approach directly integrates AdaBoost into the Particle Filter’s ob-
servation model. Lei et al. uses a similar approach to ours, and performs face and
car tracking. However, unlike Lei, our formulation can track multiple objects simul-
taneously.

A preliminary version of chapter appeared as a paper in IROS 2007 [46].

3 System Input

Our system relies on visual markers worn by individuals who wish to have their
face obscured. Our input is the sequence of images from a video stream. Let i be
the frame number in this sequence. Each image consists of a pixel array where each
pixel has a red, green, and blue (RGB) component.
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4 Assumptions

We use the location and form-factor of each visual marker as a proxy for a location
and form-factor of a corresponding human head. Thus, we assume there is an offset
between the marker’s location and the estimated face’s location. Similarly, we as-
sume the face’s size will be proportional to the size of the visual marker. Intuitively,
this means that as the marker’s size shrinks, the face will shrink proportionally.

We make the following additional assumptions:

• Whenever a person’s face is visible, then the visual marker worn by that person
is visible.

• In each frame, all visible markers have a minimum number of visible, adjacent
pixels

5 System Output

Our objective is to place solid ellipses to obscure the face of each individual wearing
a marker, while minimizing the overlay area to allow observation of actions in the
scene.

For each frame in the input stream, the system outputs a set of axis-aligned ellip-
tical regions. These regions should completely cover all faces of people in the input
image who are wearing markers. The ith output image has a set of elliptical regions
Ei associated with it. Each element in Ei is defined by a center-point, denoted by an
x and y position, and major and minor axis rx and ry:

Ei = {(x,y,rx,ry)} (1)

The ith output video frame is the same as the ith input frame with the corresponding
regions Ei obscured via solid ellipses.

Failing to detect a marker when one is present (false negative) is worse than
placing an ellipse where there is no face (false positive).

6 Three Phases of System

Our solution consists of three phases: (A) offline learning of a statistical classifier
for markers, (B) online marker detection and (C) online marker tracking.
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6.1 Phase A: Offline Training of the Marker Classifier

We train a classifier offline, which we then use in the two online phases. For clas-
sification, we use the statistical classifier, AdaBoost, which performs supervised
learning on labeled data.

6.1.1 Input and Output

A human “supervisor” provides the AdaBoost algorithm with two sets of samples
as input, one for pixels colors corresponding to the marker T+ and one for pixels
colors corresponding to the background T−. Each element of the set has a red value
r, a green value g, a blue value b and the number of samples with that color m. Thus,
the set of colors corresponding to marker pixels is

T+ = {(r,g,b,m)} (2)

and the sample set of pixels that correspond to background colors

T− = {(r,g,b,m)} (3)

As we are using a color-based method, the representative frames must expose the
system across all possible illuminations. This includes maximum illumination, min-
imal illumination, the object under a shadow, and any potential hue effects caused
by lighting phenomena such as a sunset. We discuss the AdaBoost formulation in
more detail in Section 7.1.

We use a Probabilistic AdaBoost formulation that produces a strong classifier
η : {0, . . . ,255}3 7→ [0,1]. This classifier provides our output, a prediction of the
probability that the RGB color of any pixel corresponds to the marker color.

6.2 Phase B: Online Static Marker Detector

For static detection, each frame is processed independently. This phase can be used
on it’s own to determine marker locations, or can be used as input to a dynamic
method such as what we describe in Phase C.

6.2.1 Input and Ouput

The Marker Detector uses as input the model generated from AdaBoost, as well as
a single frame from the video stream.

We can use the marker detector without tracking to infer the locations of faces.
This would produce for the ith image, a set of regions Ei as defined in Section 5,
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to obscure each face. We represent the state of each marker in the ith image as
a bounded rectangle. We denote the set of rectangular bounding regions for each
marker in image i as Ri. Each rectangular region is represented by a center-point,
denoted by an x and y position, and it’s size, denoted by a width ∆x and a height ∆y:

Ri = {(x,y,∆x,∆y)} (4)

There is an explicit mapping between the size and location of the bounding re-
gions Ri and the sizes and locations of elliptical overlays Ei. The rectangles in Ri
are restricted by the assumptions described in Section 4, but have the flexibility to
change its shape as the marker moves around the observed space. When used as a
component of a marker tracker, the detector supplies the same set of rectangles for
initializing the tracker, but also determines for each pixel the probability P(Ii(u,v))
that each pixel (u,v) corresponds to the visual marker in image Ii.

6.3 Phase C: Online Dynamic Marker Tracker

The dynamic marker tracker uses temporal information to improve the Online De-
tector. We do this by using information from the Static Detector along with a Particle
Filter for our temporal model.

6.3.1 Input and Output

The dynamic marker tracker uses both the classifier determined in the training phase
and output from the static image recognition phase. We process a single frame per
iteration of our Particle Filter. Let the time between the previous frame and the ith
frame be ti ∈ R+, and the ith image be Ii. We discuss Particle Filtering in more
depth in Section 9.1, but it requires three models as input: a prior distribution, a
transition model, and an observation model. We use the Static Marker Detector to
initialize a Particle Filter for each newly-detected marker. We also use the probabil-
ities P(Ii(u,v)), supplied by the Static Marker Detector, to determine the posterior
distribution of a marker location for each Particle Filter, given all previously seen
images.

The output for the ith frame is also the set of regions Ei as defined in Section 5.

7 Phase A: Offline Training of the Marker Classifier

To train the system, a human “supervisor” left-clicks on pixels in a sample video to
add them to the set T+, and similarly right-clicks to add pixels to set T−.
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In this phase, we use the two sets T+ and T− to generate a strong classifier
η , which assigns the probability that any pixel’s color corresponds to the marker,
providing P(Ii(u,v)). Learning algorithms are designed to generalize from limited
amounts of data. For instance, with the AdaBoost algorithm, we needed a thousand
labeled training samples. Also, as our classification algorithm is linear in the num-
ber of dimensions of our dataset (9 in our formulation) and number of hyperplanes
used as weak hypotheses in the model (20 in our experiments), we can evaluate this
classifier in realtime.

7.1 Review of AdaBoost

AdaBoost uses a set of labeled data to learn a classifier. This classifier will predict
a label for any new data. AdaBoost constructs a strong classifier from a set of weak
hypotheses.

Let X be a feature space, Y ∈ {−1,1} be an observation space and {h : X → Y}
be a set of weak hypotheses. AdaBoost’s objective is to determine a strong classifier
H : X 7→ Y by learning a linear function of weak hypotheses that predicts Y given
X . At each iteration from t = (1 . . .T ), AdaBoost incrementally adds a new weak
hypothesis ht to the strong classifier H:

f (x) =
T

∑
t=1

αtht(x) (5)

and
H(x) = sign( f (x)) (6)

Let η(x) = P(Y = 1|X = x), and define AdaBoost’s loss function φ(x) = e−x.
The objective of AdaBoost is to minimize the expected loss or

E(φ(yH(x))) = inf
H

[η(x)φ(H(x))+(1−η(x))φ(−H(x))] (7)

This is an approximation to the optimal Bayes Risk, minimizing E[l(H(X),Y )] with
loss function

l(Ŷ ,Y ) =
{

1 if Ŷ 6= Y
0 otherwise

(8)

To determine this function, we use a set of training data {(xi,yi)|xi ∈ X ,yi ∈ Y}
sampled from the underlying distribution.

AdaBoost is an iterative algorithm where at each step, it integrates a new weak
hypothesis into the current strong classifier, and can use any weak hypothesis with
error less than 50%. However, we use the greedy heuristic where at each iteration,
we select a weak hypothesis that minimizes the number of incorrectly labeled data
points [51]. We use a standard AdaBoost classifier of this form in Phase B, trained
on our labeled data.
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7.1.1 Recasting Adaboost to Estimate Probabilities

Typically, as described in [45], AdaBoost predicts the most likely label that an input
will have. Friedman et. al describe how to modify the AdaBoost algorithm to pro-
duce a probability distribution, rather than a binary classification[21]. The modified
strong classifier determines the probability that an input corresponds to a label of 1
(as opposed to -1) and is defined by

η(x) = P(Y = 1|X = x) =
e2 f (x)

1+ e2 f (x) (9)

We use this probabilistic formulation to determine the probability that each pixel
corresponds to a marker, as η(x) = P(Ii(u,v)), in Phase C.

7.2 Determining Marker Pixels

We begin by applying Gaussian blur with standard deviation σI to the image, which
enhances robustness to noise by integrating information from nearby pixels. We
use these blurred pixels for T+ and T−. We then project our 3 dimensional RGB
color space into the two additional color spaces, Hue, Saturation, Value (HSV) [19]
and LAB [26] color-spaces. HSV performs well over varying lighting conditions
because Value changes over varied lighting intensities, while Hue and Saturation
do not. LAB is designed to model how humans see color, being perceptually linear,
and is particularly well suited for determining specularities. This projection of RGB
from T+ and T− into the nine-dimensional RGBHSVLAB color space is the input
to AdaBoost.

For weak hypotheses, we use axis-aligned hyperplanes (also referred to as deci-
sion stumps),each of which divides the space along one of the nine dimensions into
two sets. These hyperplanes also have a +/- direction, where all 9-dimensional tuples
that are in the direction and above the hyperplane are labeled as visual marker pix-
els, and all other tuples are non-marker pixels. The hyperplane separating dimension
d at a threshold j is described by:

hd, j(X) =
{

1 if X [d]≥ j
−1 otherwise (10)

Our set of weak hypotheses also includes the complement of these hyperplanes
hd, j(X) = −hd, j(X). By projecting the initial RGB space into the additional HSV
and LAB spaces, we provide more classification flexibility as we have more weak
classifiers. For the weak hypothesis, AdaBoost chooses the dimension and thresh-
old at each round that minimizes the remaining error. The algorithm terminates after
running for some constant number, n, iterations. There are many ways to set n, for
instance splitting the data into a learning set and a validation set. In this technique,
learning is applied to the learning set, and the generalization accuracy is evaluated
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on the validation set. Thus, we can observe how our model performs not on the data
it is exposed to, but at predicting other unobserved data.

Rather than using the learning set and validation set directly, we went through
a calibration process where we recorded video, exposing the marker to all areas in
the viewing range of the camera and over varied lighting conditions and marker
orientations. We went through the process of collecting an initial set of 100 marker
pixels and 100 background pixels, and varied n from 5 to 50. If there were still
patches of the background or marker that were misclassified, we would add these
mistakes to the model, and repeat the learning. For instance, if a portion of the
background was misclassified as the marker, we would add some of those pixels
to the background set, and repeat the learning. This iterative approach provided an
intuitive way for the user to distinguish between the marker and the background.

8 Phase B: Online Static Marker Detector

This section describes our marker detection algorithm, using only the current frame.
Once we have the strong classifier from AdaBoost, we apply the following steps: (1)
Apply the same Gaussian blur to the RGB image as we did for training. (2) Classify
each pixel in the image (3) Cluster marker pixels (4) Select all clusters that satisfy
the constraints.

8.1 Clustering of pixels

To determine the pixels to marker correspondence, we apply the connected-component
technique [43]. The connected component algorithm is applied to an image with two
types of pixels, foreground and background pixels, or in our case, marker and non-
marker. Connected component will recursively group adjacent foreground pixels
into the same cluster. We assign a unique group id to each cluster’s pixels. Thus, a
connected group of marker pixels would be determined to correspond to the same
marker as they have the same group id. This yields a set of marker pixels for each
visual marker in the frame.

To remove false positives, we enforce additional constraints about each identified
marker cluster. We verify there are at least ζ1 pixels in the cluster, and that ratio of
width (∆x) to height (∆y) falls within a specified range from ζ2 to ζ3:

ζ2 ≤
∆x
∆y
≤ ζ3 (11)

Requiring at least ζ1 pixels per cluster prunes out false positives from small areas of
color in the background that do not correspond to the marker. We also found that in
some backgrounds, there would be long vertical or horizontal strips similar to our
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marker color, which would be incorrectly labeled as a marker as it was the same
color. However, our markers have a bounded ratio between width and height. Using
this knowledge helps remove these false positives.

9 Phase C: Online Dynamic Marker Tracker

We use Particle Filtering to incorporate temporal information into our models,
improving robustness to partial occlusions. Particle Filtering requires a probabil-
ity distribution for the likelihood of the state given the current, indirect observa-
tions. We provide this Observation Model by extending the theory from our Static
Marker Detector from Phase B, using the probability that each pixel corresponds
to a marker that is provided by the Probabilistic Adaboost formulation described in
Section 7.1.1.

9.1 Review of SIR Particle Filtering

While there are many types of Particle Filters, we use the Sampling Importance
Resampling (SIR) Filter as described in [5, 44]. It is a non-parametric method for
performing state estimation of Dynamic Bayes Nets (DBNs) over discrete time.
The state at the time of frame i is represented as a random variable Zi with instan-
tiation zi and the evidence of the hidden state Ei with instantiation ei. There are
three distributions needed for SIR Particle Filtering: the prior probability distribu-
tion of the object’s state P(Z0), the transition model P(Zi|Zi−1), and the observation
model P(Ei|Zi). The prior describes the initial distribution of the object’s state. The
transition model describes the distribution of the object’s state at the next iteration,
given the current object state. Lastly, the observation model describes the distribu-
tion of observations resulting from a specific object’s state. Particle Filtering uses a
vector of samples of the state, or “particles,” that are distributed proportionally to
the likelihood of all previous observations P(Zi|E0:i). At each iteration, each parti-
cle is advanced according to the transition model, and then assigned a probability
according to its likelihood using the observation model. After all particles have a
new likelihood, they are resampled with replacement using the relative probabilities
determined via the observation model. This results in a distribution of new parti-
cles which have integrated all previous observations and are distributed according
to their likelihood. The more samples that are within a specific state, the more likely
that state is the actual state of the indirectly observed object.
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9.2 Marker Tracking

In this section, we define our transition models and our observation models for our
Particle Filter. We also describe how to track multiple markers simultaneously.

9.2.1 Marker Model

The state of a marker is defined with respect to the image plane and is represented
by a 6 tuple of a bounding box’s center x and y positions, the height and width of
the bounding box, orientation, and speed. As can be seen in Figure 2 this yields:

z = (x,y,∆x,∆y,θ ,s) (12)

We model the marker in image coordinates, rather than world coordinates to improve
the speed of our algorithms.

9.2.2 Transition Model

The transition model describes the likelihood of the marker being in a new state,
given its state at the previous iteration, or P(Zi|Zi−1 = zi−1). Our model adds Gaus-
sian noise to the speed, orientation, bounding-box width, and bounding box height
and determines the new x and y position via Euler integration. Let W ∼ N(0,1) be
a sample from a Gaussian with mean zero and standard deviation of one. The mean
µ and standard deviation σ for each portion of our model are set a priori. Formally:

xi = xi−1 + si · cos(θi) · ti
yi = yi−1 + si · sin(θi) · ti
∆xi = ∆xi−1 +

√
ti · (σ∆x ·W + µ∆x)

∆yi = ∆yi−1 +
√

ti · (σ∆y ·W + µ∆y)
si = max(0,min(smax,si−1 +

√
ti ·σs ·W ))

θi = θi−1 +σθ ·
√

ti ·W

(13)

At each iteration, we enforce the width and height constraints for each particle de-
scribed in Section 8.1. The sample from the Gaussian, after being scaled by µ and
σ , must be rescaled according to

√
ti (as defined in Section 6.3.1) to compensate for

changing frame rates.

9.2.3 Observation Model

The observation model describes the distribution of the marker’s state given an im-
age, but our formulation gives a probability per pixel, rather than per marker state.
We use an objective function as a proxy for the observation model, which has a prob-
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Fig. 2 Illustrates the state of a single bounding box (left) and the probability mask used for the
Particle Filter’s observation model (right).

ability of 1 if the bounding box tightly bounds a rectangular region of pixels with
high probability. Let bounding box R1 be the marker’s state and bounding box R2
have the same midpoint as R1 but have size

√
2∆x×

√
2∆y. R1 and R2 are disjoint.

The
√

2 scaling factor makes the areas of R1 and R2 be equal. Then:

R1 =
{
(u,v)

∣∣ |x−u| ≤ ∆x
2 , |y− v| ≤ ∆y

2

}
(14)

R2 =
{
(u,v)

∣∣∣ |x−u| ≤ ∆x√
2
, |y− v| ≤ ∆y√

2
,(u,v) /∈ R1

}
(15)

P1(Zi = zi|Ii) =
1

∆x∆y

(
∑

(u,v)∈R1

P(Ii(u,v))

)
(16)

P2(Zi = zi|Ii) =
1

2∆x∆y

(
∑(u,v)∈R1

P(Ii(u,v))+
∑(u,v)∈R2

1−P(Ii(u,v))

)
(17)

Our final metric used as our observation model is:

P(Z|Et = et) = (1−P1)P1 +P1P2 (18)

This metric has the essential property that there is an optimal size for the bounding
box, as opposed to many other metrics which quickly degenerate into determining
the marker region to consist of all the pixels in the image or just a single pixel. For
intuition, assume the projection of the visual marker produces a rectangular region.
If a particle’s bounding region is too large, its objective function will be lowered in
region R1, while if it is too small, then the objective function would be lowered in
region R2. This function yields a probability of 1 for a tight bounding box around a
rectangular projection of the marker, yields the probability of 0 for a bounding box
with no pixels inside that correspond to the marker, and gracefully interpolates in
between (according to the confidence in R1). We illustrate the two areas in Figure 2.
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9.2.4 Multiple-Object Filtering

Our formulation uses one Particle Filter per tracked marker. To use multiple filters,
we must address the problems of: (1) markers appearing, (2) markers disappearing
and (3) multiple filters tracking the same marker. We make no assumptions about
where markers can be obstructed in the scene.

For markers appearing, we use the output of the Marker Detection algorithm to
determine potential regions of new markers. We use an intersection over minimum
(IOM) metric, also known as the Dice Measure [14], defined for two regions R1 and
R2 is:

IOM(R1,R2) =
Area(R1∩R2)

min(Area(R1),Area(R2))
(19)

If a Marker Detection algorithm has an IOM of more than a specified overlap γ1 with
any of Particle Filter’s most likely location, then a Particle Filter is already tracking
this marker. If no such filter exists, we create a new marker at this region’s location
by creating a new Particle Filter with the location and size of the detection region.
We choose an orientation uniformly at random from 0 to 2π , and choose speed from
0 to the maximum speed smax that is chosen a priori.

To address disappearing markers, we require that the probability of the state of
at least one particle for a filter exceeds γ2, otherwise the filter is no longer confident
about the marker’s location, and is deleted.

Multiple Particle Filters can become entangled and both track the same marker.
If the IOM between two Particle Filters’ exceeds the same threshold as appearing
filters γ3, we remove the filter that was created most recently. We remove the most
recent to maximize the duration a Particle Filter tracks its marker.

10 Experiments

We ran two sets of experiments to evaluate performance. We experimented in our
lab where we could control lighting conditions and we could explicitly setup patho-
logical examples. We then monitor performance on video from a construction site as
we vary model parameters. All tests involved video from a Panasonic KX-HCM280
robotic camera, transmitting an mJPEG stream of 640x480 images. We ran all ex-
periments on a Pentium(R) CPU 3.4 GHZ.

Currently, the system has not been optimized, and we could easily extend our
formulation to incorporate parallelism. The rate that we can process frames is about
3 frames per second, which is approximately 3x slower than the maximum incoming
frame rate of 10fps.

For both the Lab Scenario and Construction Site, we trained the AdaBoost al-
gorithm on 2 one-minute video sequences specific to the environment, using the
method described in Section 6.1, exposing the system to many potential back-
grounds, location and orientations of the visual markers, and over all lighting condi-
tions that the experimental data experiences. After training AdaBoost, we used the
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same sequences to calibrate our parameters. In our experiments we used:

σ∆x = 25 pixels σ∆y = 25 pixels
σs = 100 pixels σθ = 3

2 π radians
µ∆x = 12.5 pixels µ∆y = 12.5 pixels
smax = 300 pixels σI = 3.7pixels

ζ1 = 300 pixels ζ2 = 1
5

ζ3 = 5 γ1 = 0.2
γ2 = 0.4 γ3 = 0.2
# Particles = 2000 # Weak Hypotheses = 20

We define an image to be a false negative if any part of any face is visible and
to be a false positive if there is an obscuring region in Ei that does not touch any of
the faces in image i. These metrics are independent of the number of people in the
scene.

To determine the statistics for each experiment, we processed each video with our
system and then went through each image, frame by frame, and hand labeled each
for false positives and false negatives. We then went through the same sequence
twice more to help ensure quality results. This required approximately 30 seconds
per frame, or nearly 60 hours of manual labeling for the experiments presented.

10.1 Lab Scenario Experiments

Within the lab, where we can control for lighting changes, we explore scenarios
that challenge our system. Our marker is a yellow construction hat, and we assume
the face is at the bottom-center of the bounding box and the same size as the hat.
We evaluate how the system performs when 1) there are lighting conditions that the
system never was trained on, and 2) two individuals (and their respective markers)
cross. Lab experiments were run on 51 seconds of data acquired at 10 frames per
second (fps). We summarize our results in the following table:

Lab Scenario Experiments
Experiment # Frames Correct FPs FNs FP+FNs
Lighting 255 96.5% 0.0% 3.5% 0.0%
Crossing 453 96.9% 0.0% 3.1% 0.0%

Table 1 This tables shows the performance of in-lab experiments. To evaluate the system, we place
each frame into the category of correctly obscuring all faces without extraneous ellipses, being a
false negative but not false positive, being a false negative but no a false positive, and being both a
false negative and false positive. We denote false negatives with FN and false positives with FP.
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Fig. 3 Example of a False Negative with the Respectful Cameras System: A sample image frame
input on left image, with output regions overlayed on right image. This sample illustrates where
an intense light from a flashlight induced a specularity, causing the classifier to lose track of the
hat. As a result, the right image has no solid white ellipses overlaid on the face as it should.

Fig. 4 Example of Crossing Markers and the Respectful Cameras System: A sample image frame
input on left image, with output regions overlayed on right image. This sample illustrates tracking
during a crossing, showing how the Particle Filter grows to accommodate both hats.

10.1.1 Lighting

In this setup, there is a single person, who walks past a flashlight aimed at the hat
during two different lighting conditions. We experiment with all lights being on,
and half of the lab lights on. In the brighter situation, the flashlight does not cause
the system to lose track of the hat. However, in the less bright situation, the hat
gets washed out with a specularity and we fail to detect the hat during this lighting
problem. An explanation for why the specularity only was visible in the less bright
situation is that our camera dynamically modifies the brightness of the image de-
pending on the scene it observes. Thus, in the darker scene, the specularity would
have been perceived to be brighter than in the brighter scene. We show one of the
failing frames in Figure 3. In general, the system performs well at interpolating be-
tween observed lighting conditions, but fails if the lighting is dramatically brighter
or darker than the range of lighting conditions observed during training.
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Fig. 5 Example of the Respectful Cameras System: A sample image frame input on left image,
with output regions overlayed on right image. This sample illustrates tracking after a crossing (one
frame after Figure 4), showing how the system successfully creates a second filter to best model
the current scene.

10.1.2 Crossing Markers

In this test, two people cross paths multiple times, at different speeds. Figure 4
shows how the system merges the two hats into a single-classified hat when they are
connected, while still covering both faces. We are able to accomplish this via the
biasses in our transition model, µ∆x and µ∆y, which reduces false-negatives when
multiple faces are in a scene. At the following frame in Figure 5, the system suc-
cessfully segments what it determined to be a single hat in the previous frame into
two two hats by creating a new Particle Filter.

10.2 Construction Site Experiments

The construction site data was collected from footage recorded in March, 2007 at
the CITRIS construction site at the University of Berkeley, California, under UCB
Human Subjects Protocol #2006-7-11. Because we needed to respect the privacy of
the construction workers and restrictions in the protocol, we limited our data acqui-
sition to a one-week period. The video sequence presented contains a number of dif-
ficult challenges, particularly partial obstructions of the marker, significant changes
in the background due to the tracking of the moving person with a robotic camera,
and lighting differences including sharp changes from shadows. Also, the system
observes areas of the scene it was not trained on, as the robotic camera moved 10
times to track the construction worker as he walked throughout the construction
site. For the construction site, our marker is a green construction vest and we as-
sume the face is located at the top-center of the vest, as we show in Figure 1. We
first evaluate the performance of the system as we use different color-spaces used
for input to AdaBoost. We then evaluate the differences in performance between the
Particle Filtered approach from Phase C and the Static Marker Detector from Phase

1 To contact UCB Human Subjects, refer to http://cphs.berkeley.edu/content/contact.htm.
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B. All experiments were run on data acquired at 6 fps, simulating that the system
can process at this speed, rather than the current capability of 3fps. This diminished
recording speed (the max is 10 fps) was caused by requiring us to view the video
stream to move the camera to follow a person during recording, while having the
system store a secondary video stream to disk for later experimentation. The data
suggests that our system can perform with a 6.0% false positive rate, and 1.2% false
negative rate for this real-world application. We summarize our results over a 76
second (331 frame) video sequence from a typical day at the construction site in the
following table:

Construction Site Experiments
Experiment % Correct FPs FNs FP+FNs
Only RGB 19.4% 68.6% 5.1% 6.9%
Only HSV 86.1% 11.5% 1.2% 1.2%
Only LAB 84.3% 10.9% 3.6% 1.2%
All 9 (RGB+HSV+LAB) 93.4% 5.4% 0.6% 0.6%
Static Marker Detector 82.8% 16.3% 0.0% 0.9%
Dynamic Marker Tracker 93.4% 5.4% 0.6% 0.6%

Table 2 This tables shows the performance of experiments at the CITRIS construction site. To
evaluate the system, we place each frame into the category of correctly obscuring all faces without
extraneous ellipses, being a false negative but not false positive, being a false negative but no a
false positive, and being both a false negative and false positive. We denote false negatives with
FN and false positives with FP.

10.2.1 Color Models

In this test, we investigate how our system performs by using different color spaces,
specifically because we are only using simple axis-aligned hyperplanes as our weak
hypotheses. We compare the algorithm’s performance when just using RGB, just
HSV, just LAB, and then the “All 9” dimensional color space of RGB+HSV+LAB.
We determined that using all nine is superior in both false positive and false neg-
ative rates. This data suggests that color-spaces that explicitly decouple the bright-
ness from the color (LAB and HSV) perform better than those that do not (RGB).
This is probably exacerbated by our choice of weak hypotheses that decouple each
dimension.

10.2.2 Particle Filtered Data

In this test, we evaluated performance between a non-Particle Filtered approach,
where we just use each frame independently as described in Phase B, and using
Particle Filtering as described in Phase C. We can see that the system significantly
reduces the number of false-positives from 17.2% to 6.0%, while inducing slightly
more false-negatives from 0.9% to 1.2%. There were two extra false-negatives in-
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Fig. 6 Sample image frame input on left image, with output regions overlayed on right image.
This sample illustrates how without Particle Filtering, even with the nine dimensional color-space,
partial occlusions segment the visual marker, resulting in multiple small ellipses.

Fig. 7 Sample image frame input on left image, with output regions overlayed on right image.
This sample illustrates how Particle Filtering overcomes partial occlusions, when using the nine
dimensional color-space, yielding a single large ellipse.

duced by the Particle Filter, one from the shirt being cropped at the bottom of the
scene, and one where the previous frame experienced extreme motion blur. We were
very strict with our definitions of false-negatives as the face’s visible region due to
the partially cropped shirt is only 8 pixels wide.

Examples of input and output data can be found in Figures 8, 9, 10, 11, and 12.

11 Machine Learning Discussion

There are a number of other machine learning techniques other than AdaBoost that
can be explored. Other machine-learning based classification approaches include K-
Nearest Neighbors, Neural Networks and Support Vector Machines. AdaBoost was
a good fit to our problem as our formulation has a fairly low dimensional space (our
problem only has nine dimensions). Also, as we wanted our system to run in real-
time, we wanted a lightweight classification approach. We explicitly chose weak
hypotheses that were very fast to evaluate, and axis-aligned hyperplanes require
only a lookup for the particular dimension, and a comparison with each selected
weak hypothesis. This approach is similar to Viola and Jones’ [51] motivation of
using simple features that are fast to evaluation. A significant advantage of using
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the greedy selection method for the next weak hypothesis is that the formulation
can be thought of as performing a form of feature selection aswell. If the H dimen-
sion in HSV has poor prediction performance, the weak hypotheses associated with
H will not be chosen, making the system more robust. This is possible because our
weak hypotheses treat each color dimension independently. Feature selection meth-
ods such as wrapping [28] have shown to improve classification performance. The
motivation of feature reduction approaches follows the principle Occam’s Razor. We
are searching for the ”simplest” way to predict the classification. This AdaBoost for-
mulation implicitly uses feature selection in the step which chooses the next weak
hypothesis according to the greedy heuristic in [51]. Exploration of a very high di-
mensional space (like 10,000 dimensions) is computationally very difficult for our
approach, as it would require we explore all weak hypotheses, for each step of the
weak hypothesis selection process.

Additionally, we project the RGB space into the HSV and LAB spaces. The orig-
inal images are provided in RGB, giving us the features in that color-space with no
needed computation. As discussed earlier, HSV is more robust to changing lighting
conditions, and LAB is better at handling speculiarities and is designed to be percep-
tually linear. As shown in our experiments, using this redundant formulation as well
as the implicit feature reduction of AdaBoost, effectively utilizes the additional col-
orspaces. If all of the best predictive powers were just in the RGB colorspace, then
the hyperplanes for HSV and LAB would never be selected. We found the chosen
weak hypotheses spanned all of the colorspaces. Projecting into the other two color
spaces gives us 3x the features to explore at each step, improving performance, as
we show in our experiments. We also chose to use colorspace projections rather than
other types of projections as we know they were designed to give robust properties
such as attempts at being invariant to lighting conditions.

12 Conclusion

We have discussed the Respectful Cameras visual privacy system which tracks vi-
sual markers to robustly infer the location of individuals wishing to remain anony-
mous. We discuss a static-image classifier which determines a marker’s location
using pixel colors and an AdaBoost statistical classifier. We then extended this to
marker tracking, using a Particle Filter which uses a Probabilistic AdaBoost algo-
rithm and a marker model which incorporates velocity and interframe information.

It may be possible to build a Respectful Cameras method directly into the camera
(akin to the V-chip) so that faces are encrypted at the hardware level and can be
decrypted only if a search warrant is obtained.

While a 1.2% false negative rate for the CITRIS construction is encouraging, we
would like it to be even lower to better address privacy applications. One encourag-
ing idea is to run the Respectful Cameras system from multiple cameras, and cross
reference the results. Assuming that the false negative rates of multiple cameras is
independent, with three cameras, the false-negative rate would be 0.0002%.
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For related links, press coverage, videos of our experiments, a discussion of
practical and political issues, or to get updates about this project, please visit:
http://goldberg.berkeley.edu/RespectfulCameras.
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Fig. 8 Input frames from the in-lab crossing experiment

Fig. 9 Output frames showing the Particle Filter with the nine-dimensional colorspace performs
well under dynamic obstructions
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Fig. 10 Input frames from the CITRIS construction site

Fig. 11 Output frames showing using only the RGB colorspace is insufficient

Fig. 12 Output frames using the full nine-dimension colorspace, showing better performance
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