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Abstract − Medical procedures such as seed implants, 
biopsies, and treatment injections require inserting a needle 
tip to a specific target location inside the human body. This 
is difficult because (1) insertion causes soft tissues to displace 
and deform, and (2) it is often difficult or impossible to 
obtain imaging data during insertion. We are developing a 
sensorless planning system for needle insertion that 
incorporates numerical optimization and a soft tissue 
simulation based on finite element methods. The simulation, 
based on a dynamic FEM formulation, models the effects of 
needle tip and frictional forces on soft tissues defined by a 
2D mesh. In this paper we describe a sensorless planning 
algorithm for radioactive seed implantation that computes 
needle offsets to minimize seed placement error. The 
resulting needle offsets compensate for predicted tissue 
deformations without real-time imaging. 

I. INTRODUCTION 

Medical procedures such as brachytherapy, biopsy, and 
treatment injections require inserting a needle to a specific 
target location inside the body to implant a radioactive 
seed, extract a tissue sample, or inject a drug. In all cases, 
the needle tip should be as close as possible to an internal 
target when the procedure is performed. Unfortunately, 
inserting the needle causes the surrounding soft tissues to 
displace and deform. Real-time imaging is often not 
available during insertion or is of very poor quality. As 
illustrated in Fig. 1 left column, lack of planning can 
result in substantial placement error. 

We are developing a sensorless planning system for 
needle insertion to reduce placement error. We use a 2D 
FEM model of the soft tissues surrounding the target 
implant location and then use dynamic simulation of 
needle insertion to compute tissue deformations. The 
simulation is repeated for different insertion locations and 
depths to compute an optimal set of needle offsets: a 
sensorless motion plan as illustrated in Fig. 1 right 
column greatly reduced placement error. 

In this paper we demonstrate the system in the context 
of permanent seed prostate brachytherapy, a minimally 
invasive medical procedure that is widely used for 
treating prostate cancer. During the procedure, physicians 
use needles to permanently implant radioactive seeds 
inside the prostate that irradiate the surrounding tissue 
over several months. The radioactive dose delivered 

should minimize healthy tissue damage while maximizing 
the destruction of cancerous cells. The success of this 
procedure depends on the accurate placement of 
radioactive seeds within the prostate gland [11, 22]. 
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Fig. 1: Four vertical frames illustrating needle insertion based on 
deforming ultrasound images of the human prostate using simulation. 
The left column shows results without planning, producing substantial 
placement error. The right column shows results with the sensorless 
plan, with minimal placement error. The target implant location is 
indicated in all frames with a white cross fixed in the external body 
frame. Frame (a) outlines the prostate. In Frame (b), the needle is 
inserted to the target without planning and past the target by a 
computed offset with the sensorless plan; in both cases the radioactive 
seed (small square) is released at the needle tip. In Frame (c), the 
needle is retracted. Frame (d) indicates the resulting placement error, 
the distance between the target and resulting seed location. Without 
planning, placement error is substantial: 26% of the width of the 
prostate resulting in damage to healthy tissue and failure to kill 
cancerous cells. With sensorless planning, shown in the right image of 
Frame (d), placement error is negligible. 
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Before the implant procedure, a dosimetric plan is 
prepared based on static imaging of the prostate and 
medical considerations. Methods for calculating optimal 
seed locations are available [23, 19, 30]. Achieving the 
desired seed placement in the patient is left to the 
physician. Multiple seeds and biodegradable spacers are 
loaded into needles that the physician inserts 
transperineally into the patient who is lying on his back. 
Seeds and spacers are ejected from the needle when the 
depth specified by the dosimetric plan is reached. 

Tissue deformations during the implantation contribute 
to seed misplacement [22, 26], as simulated in Fig. 1. In 
prior work, an experienced physician implanting 1195 
seeds in 30 patients achieved average displacement errors 
of 0.47cm in depth and 0.22cm in height for an average 
placement error of 0.63cm [26], which is a substantial 
error of 21% for prostates that average 3cm in width. 
Although real-time ultrasound imaging is available during 
the procedure, it does not produce crisp tissue boundaries 
and cannot be used to precisely track the penetration of 
the needle into the deformed prostate. Below we describe 
a sensorless planning approach that can greatly reduce 
seed placement error without real-time imaging. 

II. RELATED WORK 

In robotics, sensorless planning algorithms, pioneered 
by Mason and Erdmann in the 1980s [13], have been 
developed to position and orient mechanical parts using 
parallel jaws [15], vibrating surfaces [7], and squeeze and 
roll primitives for micro-scale parts [20]. Sensorless 
planning has also been applied to insertion of parts inside 
fixtures [5] and moving parts across surfaces [10]. 

To apply sensorless planning to needle insertion, we 
require a fast and accurate simulation. DiMaio and 
Salcudean performed pioneering work in simulating the 
deformations that occur during needle insertion [12]. 
Their simulation, based on a quasi-static finite element 
method, achieves extremely fast update rates (500Hz) and 
high accuracy (node displacement error of 1.4mm for 
needle penetration of 70mm). High accuracy requires a 
calibration phase where the force distribution along the 
needle shaft is estimated based on observed tissue 
deformations. This force distribution, which is modeled 
with a parameterized surface in Figure 11 of [12], may be 
difficult to measure in vivo. Our simulation uses an 
alternative model based on a reduced set of scalar 
parameters such as needle friction, sharpness, and 
velocity [2]. The sensitivity of current medical methods to 
these simulation parameters was analyzed in [2]. In this 
paper, we focus on sensorless planning: computing offsets 
for insertion height and depth to minimize placement 
error. 

Needle insertion simulation requires computing 
deformations of soft tissue when forces are applied. The 
history of offline animation and real-time simulation of 

deformable objects is summarized in [14]. Unlike 
heuristic methods like the mass-spring model, the finite 
element method (FEM) is based on the equations of 
continuum mechanics. The feasibility and potential of this 
approach for animation was demonstrated by Terzopolous 
et al. [28]. Real-time visual performance for surgery 
simulation of the human liver using FEM was achieved 
by Stéphane Cotin et al. using a large preprocessing step 
[9]. They modeled tissue as a linearly elastic material and 
allowed only small quasi-static deformations. 

Our simulator relaxes the quasi-static assumption and 
simulates dynamic deformations, as formulated by 
Zhuang [31] and Picinbono et al. [20]. These dynamic 
simulations rely on mass lumping to achieve interactive 
performance, but the loss of realism for soft tissues 
resulting from this approximation is relatively low as 
shown experimentally in [3]. Both Zhuang and Picinbono 
et al. use quadratic strain to accurately model large 
deformations, and Wu et al. extended this work to include 
nonlinear material elasticity [29]. 

Setting accurate parameters for tissue properties is 
important for realistic simulation. We use results from 
Krouskop et al., who estimated the elastic modulus for 
prostate and breast tissue using ultrasonic imaging [18]. 
Recent work in nonlinear parameter estimation includes 
[8] and [16]. Kataoka et al. separately measured tip and 
frictional forces during needle insertion into a canine 
prostate, which is useful for simulation validation [25]. 

When real-time sensor data such as imaging is 
available during needle insertion procedures, robotic 
control algorithms can be used to steer the needle to the 
desired target [24]. However, sensorless planning must be 
used when real-time sensor data is not available or 
unreliable.  

Sensorless planning based on pre-operatively 
predicting the effects of tissue deformations has been used 
for some medical procedures. In [4], a piece-wise 
nonlinear FEM model was used to track the position of a 
tumor during breast compression before a breast cancer 
biopsy. Statistical and FEM methods that approximated 
tissue deformations caused by uniform force loading are 
compared in [17] for biopsy applications. However, we 
are not aware of past work explicitly simulating needle 
insertion and the resulting tissue deformations to plan 
needle procedures without real-time sensor input. 

III. PROBLEM DEFINITION 

Given a target point for the seed, we compute a needle 
insertion plan that will minimize placement error, the 
distance between the needle tip and a target location 
within the tissue. In 2D, we must compute a needle 
insertion height ȳ and a depth z̄ so that the needle tip 
reaches a point (y, z) as close as possible to the target 
location (yt, zt) inside the tissue. Based on brachytherapy, 



 

 

 
Fig. 2: In 2D, insertion height and depth should be set so that the needle 
tip reaches the target with minimum placement error. The target’s 
location in the world frame moves as the needle is inserted because the 
tissue is deformed. 
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Fig. 3: The coordinate of the target in the reference mesh (yt, zt), 
denoted by ×, coincides with the target in the world frame (ȳt, z̄t), 
denoted by • (a). Both the × and • represent the same location within the 
tissue, but their world frame coordinates differ when the tissue is 
deformed (b). we refer to the actual location in the tissue (y, z) reached 

by the needle tip as the seed placement, although this 
could refer to a biopsy or injection location. B. Computing Soft Tissue Deformations 
Input: 

We use the finite element method (FEM) to compute 
the deformations of soft tissues when forces are applied 
by the needle. Rather than calculating only static 
deformations, we simulate the dynamic behavior of soft 
tissues by solving for the acceleration, velocity, and 
displacement of each node for every time step to produce 
a history-dependant simulation. 

G: Tissue reference mesh with material properties 
(yt, zt): Target coordinate in the tissue 
(ȳmin, ȳmax): Range of feasible insertion heights 
z̄max: Maximum feasible insertion depth 
v: Needle velocity during insertion and retraction 
h: FEM simulation time step We approximate soft tissues as linearly elastic 

materials. The FEM problem for mesh G is defined by a 
system of up to d=2n linear differential equations: 

Output: 
E*: Minimum feasible placement error 
(ȳ*, z̄*): Insertion height and depth to obtain error E* M ai + C vi + K ui = fi (1) 

Our planning algorithm for needle procedures is 
composed of the following stages: 

where M is the mass matrix, C is the damping matrix, K 
is the stiffness matrix, fi is the external force vector, ai is 
the nodal acceleration vector, vi is the nodal velocity 
vector, and ui is the nodal displacement vector at time 
step i [32]. 

1. Tissue Model: Create a model of the deformable 
tissues surrounding the target implant location. 

2. Simulating Needle Insertion: Given a needle 
insertion height and depth, simulate needle 
insertion to compute seed placement and error. 

To integrate the differential system (1) over time, we 
use the Newmark method, which translates the differential 
system into a linear system of equations. We solve this 
system using the methods shown in [2] for interactive 
performance. 

3. Needle Insertion Planning: Optimize the insertion 
height and depth to minimize placement error. 

These steps are explained in sections IV, V, and VI 
below. We then apply our system to prostate 
brachytherapy in section VII. 

V. SIMULATING NEEDLE INSERTION 

We assume that the needle is thin and rigid. The world 
frame is rotated so that the needle is being inserted along 
the z-axis and the insertion height is determined by the y-
axis. Once the needle is in contact with tissue, we assume 
the needle’s y-coordinate is fixed and it only moves 
parallel to the horizontal z-axis. 

IV. SOFT TISSUE MODEL 

A. Tissue Geometry 
The soft tissues surrounding the target are defined 

using a mesh composed of m discrete 3-node triangular 
elements created using n total nodes, each with 2 degrees 
of freedom. This reference mesh G defines the geometry 
of the tissues, with each node’s coordinate stored in the 
position vector x. The simulation computes mesh 
deformations that simulate the tissue’s response to the 
needle. The deformed mesh Ḡ is constructed using the 
node coordinates x+u in the world frame, where u is the 
nodal displacement vector, as shown in Fig. 3. 

Our simulation extends the model and algorithm in [2] 
to support meshes with nonhomogeneous material 
properties. The algorithm simulates the force the needle 
exerts on the tissue at its tip and frictional forces along the 
needle shaft. Puncturing tissue membranes requires 
additional force at the needle tip. These forces applied by 
the needle are computed and the FEM force vector fi is 
updated at every time step. 



 

 

Using FEM, forces are applied as boundary conditions 
on elements in the reference mesh. Since the physician 
may insert the needle at any location, it is usually 
necessary to modify the reference mesh in real-time to 
ensure that element boundaries are present where the tip 
and friction forces must be applied. To apply the tip force, 
a node is maintained at the needle tip location during 
insertion. To apply the friction forces, a list of nodes 
along the needle shaft is maintained and these nodes are 
constrained to only move horizontally along the needle 
shaft. These mesh modifications are fully described in [2]. 

A seed can be implanted at the location of the needle 
tip in the reference mesh at any time. We assume that the 
seed does not move in the reference mesh after it is 
implanted. The location of the seed is tracked efficiently 
by storing in memory the containing element of the seed 
in the reference mesh and updating it if any nodes of the 
containing element are moved. The seed’s world frame 
coordinates are computed by interpolating between the 
enclosing element’s deformed node coordinates. 

VI. NEEDLE INSERTION PLANNING 

A needle insertion plan is defined by (ȳ, z̄), where the 
needle is inserted at some height ȳ to a depth z̄ in the 
world frame. Since needles can only be inserted in certain 
locations on the skin surface, we define the feasible 
insertion height domain by ȳ∈(ȳmin, ȳmax). The maximum 
medically feasible insertion depth is given by z̄max. 

The target location is (yt, zt) in the reference mesh. 
Given a plan (ȳ, z̄), we can simulate needle insertion to 
compute the reference mesh coordinate (y, z) of the 
implanted seed. The goal is to find (ȳ*, z̄*) such that the 
corresponding reference mesh coordinate (y*, z*) equals 
(yt, zt); the seed should be implanted at the target in the 
reference mesh. The placement error E is defined by the 
Euclidean distance from (y*, z*) to (yt, zt).  

Minimizing E can be broken down into two 
optimization problems, finding the optimal z̄* given ȳ*, 
and then finding the globally optimal ȳ*. 

A. Optimizing Needle Insertion Depth 
When any ȳ is given, we simulate needle insertion at 

height ȳ to find z̄* that minimizes E. The needle insertion 
simulation algorithm described in section V always 
maintains a node at the location the needle tip. If a seed is 
implanted at time step i, then the seed would be located at 
the coordinate of the tip node, which is p=(yp, zp) in the 
reference mesh. Hence, E is quickly computed as: 

E = (yp - yt)2 + (zp - zt)2 . 
We simulate needle insertion until the needle tip reaches 
z̄max computing E for every time step and saving the z̄* for 
which E is smallest.  

This optimization takes O(F z̄max/(v h)) time in the 
worst case, where h is the time step duration, v is the 

needle velocity, and F is the complexity of the simulation 
solving algorithm described in section IV.B, which is 
O(n) for interactive simulation. Since the needle tip will 
move a distance v h each time step, the resolution of z̄* is 
v h. A small h is desirable to improve the resolution of z̄*, 
but the number of time steps required to compute the 
optimal insertion depth z̄* grows linearly as h decreases. 

B. Improving Performance Using Adaptive Time Steps 
Both the speed and precision of the planner can be 

improved using adaptive time steps. When the needle tip 
is far from the target, a large time step hL should be used 
since the value of z̄* will not affected. When the needle 
tip is close to the target, a small time step duration hS < hL 
is desirable since z̄* might be modified. 

Although the needle tip moves exactly a distance h v 
along the z-axis in the world frame, its movement in the 
reference mesh may be erratic as the needle cuts through 
tissue. To determine the optimal time to transition from hL 
to hS, we use parameters from the needle insertion 
algorithm defined in section V. The needle tip, located at 
point pi in the reference mesh at time step i, moves in 
direction ri. If the needle tip force exceeds fb, the tip will 
cut a length b of tissue and move to point pi+1=pi+bri. The 
magnitude of parameter b is scaled by the factor h v. We 
use this to determine the time step duration. In Fig. 4, line 
l1 connects points pi and pi+1, and line l2 is perpendicular 
to l1 and passes through the target point t. When l1 
intersects l2 along the segment (pi, pi+1), a smaller time 
step is used in order to reduce the granularity h v of z̄* 
and decrease the distance between pi and pi+1 so that a 
more precise optimal point can be found. 

 
Fig. 4: When using adaptive time steps, a small time step will be used 
when the needle tip pi is close to the target t. The needle is heading in 
direction ri to point pi+1 in the reference mesh. When l1 intersects l2 
along the segment (pi, pi+1), a smaller time step is used in order to reduce 
the distance between pi and pi+1 so that a more precise optimal point can 
be found. 

C. Optimizing Needle Insertion Height 
Due to tissue deformations during insertion, the needle 

tip position y in the reference mesh may not be the same 
as the needle insertion height ȳ. For a given ȳ, we can 
compute the minimum E and corresponding z̄* using the 
approach in section VI.A. To find the optimal ȳ*, we need 
to minimize the value of E as a function of ȳ. 

Minimizing E as a function of ȳ is difficult because 
derivative values are not available and E is not guaranteed 
to be unimodal (strictly quasiconvex) because of tissue 



 

 

nonhomogeneity, tissue-bone connections, and other 
anatomical constraints. Hence, global optimality cannot 
be verified without analyzing the entire feasible space. In 
general, an approximate minimum of E can be found 
using a grid search over ȳ∈(ȳmin, ȳmax). For some 
simulations, it is not possible to insert the needle at 
different heights and still reach the same point inside the 
tissue (as in a square box of homogeneous tissue, for 
example). In such cases, E will be unimodal and a line 
search method such as the golden section method [6] can 
be used over the range ȳ∈(ȳmin, ȳmax) to find the optimal 
ȳ*. Even when E is not unimodal, a line search method 
can still be used to find a locally optimal ȳ* that is better 
than the standard procedure (ȳt, z̄t) that ignores 
deformations. 

D. The Planning Algorithm 
Algorithm input and output are defined in section III. 
Helper functions: 

GetOptimalDepth(ȳ, G): Use model G and insertion 
height ȳ to compute the optimal insertion depth and 
resulting seed placement as described in section 
VI.A. 

NewLineSearchPoint(ȳ): Returns a new ȳ using a line 
search method as described in section VI.C.  

Distance(p1, p2): Euclidean distance between 2 points. 
Pseudocode: 

1. Initialize: E = ∞, ȳ = yt, z̄ = xt. 
2. Repeat 
3.      (z̄, y, z) = GetOptimalDepth(ȳ, G) 
4.      if( Distance((y, z), (yt, zt)) < E ) 
5.           E = Distance((y, z), (yt, zt)) 
6.                  ̄z* = z̄, ȳ* = ȳ 
7.      ȳ = NewLineSearchPoint(ȳ) 
8. While( E > error_tolerance ) 
9. Return (E, ȳ, z̄) 

VII. PLANNING FOR PROSTATE BRACHYTHERAPY 

Fig. 1 provides a simulated case study showing that 
deformations can produce significant errors in final seed 
placements during prostate brachytherapy. Seed 
placement error should be minimized to achieve the 
optimal radioactive dose distribution. Since we assume 
the tissue is elastic and that the seed does not move in the 
reference frame once it is implanted, the placement error 
in the reference mesh at the time of implantation is the 
same as the distance between the target and seed in the 
prostate after needle retraction and tissue settling. Hence, 
the planning algorithm defined in section VI is sufficient 
to achieve the desired seed placement and we do not need 
to simulate needle retraction to compute the error. 

A. Simulation Implementation 
Our needle insertion simulator was implemented using 

C++ and OpenGL and tested on a 750MHz Pentium III 
PC with 256MB RAM. When executed in interactive 
simulation mode, a physician can guide the needle and 
implant seeds using a mouse. For a model with 1250 
triangular elements the simulator responds at the rate of 
24 frames per second, sufficient for visual feedback (but 
not fast enough for haptic control). 

B. Prostate Model 
Our prostate model is based on a patient who 

underwent brachytherapy treatment for prostate cancer at 
the UCSF Medical Center in June 2002. A static pre-
procedure ultrasound image of the prostate was 
superimposed as a texture map on a mesh composed of 
1250 triangular elements. A polygon outlining the 
prostate membrane was manually drawn on the texture 
map; underlying mesh elements within this polygon were 
assigned prostate tissue properties and the remaining 
elements were assigned fatty tissue properties. The 
Young’s modulus and Poisson ratio were set using the 
results of [15]. During simulation, the static pre-procedure 
ultrasound image is deformed based on the underlying 
mesh and is displayed to the user. 

To set the remaining simulation parameters and 
validate our model, we compared the output of the 
simulation with an ultrasound video recorded during a 
real medical procedure on the same patient in June 2002. 
The procedure was recorded using an ultrasound probe in 
the sagittal plane. Unknown model parameters were set so 
that the simulation output closely matched the ultrasound 
video. Snapshots from the simulation output were 
compared with frames from the ultrasound video [1]. 
Although it is difficult for non-specialists to identify 
gland boundaries in ultrasound, UCSF medical experts 
comparing the two image sequences judged them as 
remarkably similar. We plan to perform controlled 
experiments to further evaluate simulation accuracy 
across multiple patients. 

C. Target Test Case 
We test our planning algorithm using the target (yt, zt) 

= (1.50cm, 3.00cm) shown in Fig. 1 for a 3cm wide 
prostate. Without planning, deformations are ignored and 
the needle is inserted to (ȳ, z̄) = (yt, zt), the seed would be 
implanted at (y, z) = (1.41cm, 2.21cm) in the reference 
mesh based on our simulation. This results in a placement 
error E=0.79cm, which is 26% the width of the prostate. 

D. Optimizing Insertion Depth 
For prostate brachytherapy, we assume that seeds can 

only be implanted inside the prostate and set z̄max 
accordingly. We assume needle velocity v is 0.5cm/sec, 
which is an approximate insertion speed during 
brachytherapy. The time step is fixed at h=1/30 sec. 

Based on standard practice, we first simulate the 
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Fig. 8: To eliminate placement error, both needle insertion depth and 
height must be adjusted. Plot (a) shows the optimal insertion depth z̄* 
computed for different insertion heights. Plot (b) shows the resulting 
minimum error E as a function of insertion height, assuming that the 
corresponding optimal depth shown in plot (a) was used. The seed can 
be placed exactly at the target be inserting at height ȳ*=1.59cm to a 
depth of z̄*=3.80cm. 
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Fig. 5: Needles should generally be inserted deeper than standard 
practice to compensate for tissue deformations and minimize placement 
error. Placement error E is plotted as a function of needle insertion 
depth z̄, where the insertion height is fixed at the standard ȳ=yt=1.5cm. 
The bold portion of the line denotes feasible placements inside the 
prostate. The standard insertion depth z̄=zt=3.0cm yields a placement 
error of E=0.79cm (26% of prostate width). To minimize error for ȳ=yt, 
the needle should be inserted deeper to a depth of z̄*=3.84cm, which 
yields an error of only E=0.14cm (5% of prostate width). 

insertion of a needle at the target height ȳ=yt=1.5cm and 
plot the placement error E as a function of insertion depth 
in Fig. 5. The standard insertion depth z̄=zt=3.0cm yields 
a placement error of E=0.79cm, 26% of prostate width. 
The error in the depth coordinate is caused primarily 
because the tissue in front of the needle tip is being 
compressed before it is cut. This means the needle must 
be inserted deeper than the target depth to decrease this 
error. To minimize E for ȳ=yt, the needle should be 
inserted deeper to a depth of z̄*=3.84cm, which reduces 
the error by 82% to only E=0.14cm, 5% of prostate width. 

E. Optimizing Insertion Height 
The prostate is composed of a stiffer material than the 

surrounding fatty tissue. Because our target is located 
near the bottom of the prostate, inserting the needle near 
the target height causes the prostate to rotate slightly 
clockwise, as shown in Fig. 7. The needle must be 
inserted higher to compensate for its deflected path 
through the prostate. Hence, both needle insertion depth 
and height must be adjusted to eliminate placement error.  

  
(a) Needle approaches prostate (b) Prostate rotated by needle 

Fig. 7: When the needle pushes against the lower half of the prostate 
from the right, the prostate rotates clockwise slightly because it is stiffer 
than the surrounding fatty tissue. This slight rotation can lead to 
significant changes in the optimal needle insertion height. 

For a 0.6cm range around the target height ȳt=1.5cm, 
we plot the computed optimal insertion depth in Fig. 8(a). 
Fig. 8(b) shows the resulting minimum error E as a 

function of insertion height, assuming that the 
corresponding optimal depth shown in plot (a) was used. 
To compenstate for tissue deformation effects, the needle 
should be inserted both higher and deeper than standard 
practice. According to the simulation results, the seed will 
be placed exactly at the target with E*=0 by inserting at 
height ȳ*=1.59cm to a depth of z̄*=3.80cm. 

The above optimal plan was computed using grid 
search. As described in section VI.C, we can use the 
golden section method to find a locally optimal ȳ* using 
fewer simulation iterations. To test planner performance, 
we selected 12 sample points inside the prostate, shown 
by the crosses in the Fig. 6. We apply the line search in 
the range ȳ∈(ȳt–0.2cm, ȳt+0.2cm) with tolerance 0.01cm 
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(a) Placements without planning (b) Placements using planner 

Fig. 6: Twelve sample points were selected as targets maked “+” inside 
the prostate. Actual seed placements are marked “•”. Standard practice 
resulted in major placement errors averaging 20% of the prostate width, 
which will lead to a poor dose distribution (a). Seed placement error 
was neglible using the planner results (b). 



 

 

for each target. Using the standard practice approach, the 
average error was 0.59cm (20% of prostate width) with a 
standard deviation of 0.10cm. Using our planner, the 
average error was reduced to 0.002cm (0.1% of prostate 
width) with a standard deviation of 0.004cm. The average 
time to compute optimal depth given height was 8.5 
seconds and computing both optimal height and depth for 
a target took an average of 97.7 seconds. 

VIII. CONCLUSIONS 

In this paper we described a sensorless planning 
system for needle insertion procedures that incorporates 
numerical optimization and a soft tissue simulation. The 
simulation, based on a dynamic FEM formulation, models 
the effects of needle tip and frictional forces on soft 
tissues defined by a 2D mesh. Our sensorless planning 
algorithm for radioactive seed implantation computes 
needle offsets to minimize seed placement error. The 
resulting needle offsets compensate for predicted tissue 
deformations without real-time imaging. 

Our planning procedure assumes values for patient-
specific parameters such as the Young's modulus. Ideally, 
seed placement error should be sensitive to physician-
controlled parameters and relatively insensitive to patient-
specific parameters, since the latter are difficult to 
estimate before the procedure. The sensitivity analysis in 
[2] suggests that this is the case: inserting the needle 
deeper and/or using sharper needles with less surface 
friction can decrease seed placement error while the 
variances of the biological parameters of global tissue 
stiffness and compressibility have only a minimal effect 
on seed placement error. The effects on placement error 
of tissue nonhomogeneity and connectivity are currently 
being examined. Although simulation suggests that 
planner performance will be relatively insensitive to 
patient-specific parameters such as global tissue stiffness 
and compressibility, we will test performance under a 
variety of conditions using synthetic materials that 
approximate human tissue before testing on animal and 
human subjects. 
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