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ABSTRACT

To facilitate browsing and selection, almost all recommender
systems display an aggregate statistic (the average/mean or
median rating value) for each item. This value has poten-
tial to influence a participant’s individual rating for an item
due to what is known in the survey and psychology litera-
ture as Social Influence Bias; the tendency for individuals to
conform to what they perceive as the “norm” in a commu-
nity. As a result, ratings can be closer to the average and
less diverse than they would be otherwise. We propose a
methodology to 1) learn, 2) analyze, and 3) mitigate the ef-
fect of social influence bias in recommender systems. In the
Learning phase, a baseline dataset is established with an ini-
tial set of participants by allowing them to rate items twice:
before seeing the median rating, and again after seeing it. In
the Analysis phase, a new non-parametric significance test
based on the Wilcoxon statistic can quantify the extent of
social influence bias in this data. If this bias is significant, we
propose a Mitigation phase where mathematical models are
constructed from this data using polynomial regression and
the Bayesian Information Criterion (BIC) and then inverted
to produce a filter that can reduce the effect of social influ-
ence bias. As a case study, we apply this methodology to the
California Report Card (CRC), a new recommender system
that encourages political engagement. After the Learning
phase collected 9390 ratings, the non-parametric test in the
Analysis phase rejected the null hypothesis, identifying sig-
nificant social influence bias: ratings after display of the me-
dian were on average 19.3% closer to the median value. In
the Mitigating phase, the learned polynomial models were
able to predict changed ratings with a normalized RMSE
of 12.8% and reduce bias by 76.3%. Results suggest that
social influence bias can be significant in recommender sys-
tems and that this bias can be substantially reduced with
machine learning. The CRC, our data, and experimental
code can be found at:
http://californiareportcard.org/data/

1. INTRODUCTION

In the 1950’s, Solomon Asch performed a well-known set of
experiments [2,3,7] where participants were asked to choose
which of a set of lines matched the length of reference lines.
When working in private, only 1% of answers were incor-
rect. But when answering in the presence of a group of
confederates who agreed on incorrect answers, 25% of par-
ticipants conformed to the incorrect consensus values. These
results were widely repeated to confirm what is now known
as social influence bias: the answers of other participants en-
courage “conformity” — responses similar to the community
“norm” [11,21,28].
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Figure 1: Typic_al displays of aggregate statistics
(the average/mean or median rating value) in Ama-
zon, Netflix, and the California Report Card that
can lead to social influence bias. This paper ex-

plores a methodology for learning, analyzing, and
mitigating such bias.

This effect can occur in almost all recommender systems,

which display the “norm” aggregate statistics (the average/mean

or median rating values) for items before asking participants
to enter their own rating values, which is of course reason-
able to facilitate browsing and selection. For example, online
retailers such as Amazon display the average rating value
for products and Netflix displays the average rating value
of movies (Figure 1). Display of average ratings values can
also be used as an incentive [19] to reveal information about
peers after a participant enters his or her own grade. Dis-
play of such data also increases the perceived transparency
of open democracy platforms that encourage political en-
gagement [1,24,25].

Social influence bias can yield ratings that are closer to the
average, less diverse, and less representative of participants’
true evaluations for items, which can in turn produce bias in
similarity measures between items and users. In this paper,
we propose a methodology to learn, analyze, and mitigate
the effects of social influence bias in recommender systems.
As a case study, we apply our techniques to a new recom-
mender system, the California Report Card (CRC), where
participants assign letter grades (A+ to F, a 13 point scale)
to the State of California on six political issues. The CRC
interface reveals median grade values to participants after



they enter their own ratings and then allows participants to
revise their ratings.

The key insight is that the combination of initial and re-
vised ratings pairs allows us to determine if the social influ-
ence bias is statistically significant, and if so, can be used to
build an inference model that can mitigate the effects of so-
cial influence bias. The methodology includes three phases:
-Learn To initialize with baseline data, an initial “learning”
phase asks an initial set of participants to rate a set of items
twice: before seeing the median rating, and again after the
median is revealed. This collects triplets of ratings for each
participant (initial rating, median rating, and final rating).

-Analyze Given these triplets, we propose a new non-parametric

significance test based on the Wilcoxon statistic to deter-
mine whether ratings that were changed are significantly
closer to the median, i.e. the degree of social influence bias
for each item.

-Mitigate Using the Bayesian Information Criterion (BIC),
we learn a polynomial function of optimal degree that esti-
mates the initial rating from the final rating and the median.
This can be used in a post-learning phase (when medians are
always visible), or on historical ratings, to estimate what a
participant’s rating would be without social influence bias.

In our case study, we apply this methodology to the Cali-
fornia Report Card (CRC), a two-part recommender system
that encourages political engagement. In Part I, participants
assign letter grades (a 13-point rating scale) to the state of
California on six political issues. Part I uses the six rat-
ings to quantify similarity between participants and issues.
In Part II, participants enter textual suggestions about new
political issues and grade the suggestions of other partici-
pants. Part II uses participant ratings to identify (recom-
mend) valuable suggestions. The CRC was announced via
press and social media in late January 2014.

Results to date from the CRC suggest that given the op-
portunity, many participants will revise their grades/ratings:
862 out of 9390 ratings were changed after participants saw
the median value. We found statistically significant effects
of social influence bias, with ratings on average 19.3% closer
to the median value than ratings that were not changed.
We also conducted an independent reference survey using
SurveyMonkey to ask a random sample of 611 participants
from the company’s paid pool of California participants to
grade the same set of issues without displaying the median
values. This data did not exhibit the same clustering around
the median as the CRC, which comparably had ratings that
were statistically significantly closer to the median (12.0%),
suggesting that social influence bias is an important factor.

As described in the next section, earlier studies of social
influence bias in recommender systems have focused on bi-
nary ratings (eg. up or down) [22,29]. Since many recom-
mender systems have multi-valued rating scales (eg. 5 stars),
we explore the effect on multi-valued ratings and develop
a non-parametric significance test that avoids assumptions
about the distribution of ratings. We then show how ma-
chine learning can be used to estimate unbiased ratings and
present results with data from the California Report Card,
including learning curves that show that in most cases esti-
mation converges relatively quickly. Applying the proposed
methodology to existing recommender systems raises a num-
ber of interesting questions for further research.

2. RELATED WORK

The Asch model for conformity is the theoretical basis
for what is sometimes called social herding, the tendency
to conform [4,5], and this has been a popular consumer

choice model in economics [9,12,16]. Such models have also
been studied in psychology as “persuasion bias” [11]. In
2011, Lorenz et al. described how these biases can under-
mine the effectiveness of crowd intelligence in estimation
tasks [18]. They argue that movement towards the group
consensus causes a diminished diversity of opinion poten-
tially leading to inefficiencies and inaccurate collective esti-
mates. Danescu-Niculescu-Mizil et al. analyze helpfulness
ratings on Amazon product reviews [10]. They found that
the helpfulness ratings did not just depend on the content of
the review but also its aggregate score and its relationship to
other scores. In order to better distinguish social influence
from other biases, Muchnik et. al designed a randomized
experiment in which comments in an online forum were ran-
domly up-treated or down-treated [22]. They concluded a
statistically significant bias where a positive treatment in-
creased the likelihood of positive ratings by 32%. In both
Danescu-Niculescu-Mizil et al. and Muchnik et al., they
looked at the problem of Social Influence bias in an a priori
setting, where users see the aggregate statistic before giving
their rating. Our work tests for a particular form of social
influence where users are given the opportunity to change
their opinions following the feedback.

Zhu et al. conducted an experiment in which users eval-
uate an image on a subjective question with binary scale
(eg. “Is this image cute?”), which was followed (either im-
mediately or later) by a presentation of the crowd consensus
opinion [29]. Users were given an opportunity to change
their response, and they concluded that there was a sig-
nificant tendency to change submissions. The tendency to
change was the strongest when users were asked to make
their second decision much later and not immediately after
the first. However, Zhu et al. also acknowledge there are
competing psychological factors at work in this experiment.
Along these lines, Sipos et al. argue that context along
with an aggregate rating plays a large role in the users’ rat-
ings. That is, users may attempt to “correct” the average,
by voting in a more polarizing manner (more positively or
negatively) [27]. We extend this prior work to measure and
predict these changes when the input is more complex than
a binary scale, and propose a non-parametric methodology
that can be, in principle, extended to a variety of different
input mechanisms. Our model can also account for a chang-
ing aggregate statistic such as a median rating changing as
more data is collected.

3. LEARNING PHASE

In this section, we describe the learning phase of our tech-
nique where we collect the triplets (initial rating, final rat-
ing, and observed median) for building our model. We will
explain in detail the system design of the California Report
Card, how we record changed ratings, and define the nota-
tion that we will use in the following sections.

3.1 The California Report Card

The California Report Card (CRC) ! is a prototype cross-
platform web/mobile application designed to allow partici-
pants to advise California state leaders on timely policy is-
sues. The CRC extends our earlier work with Opinion Space
and Eigentaste [6,13-15,23]. In the CRC, participants assign
letter grades (A+ to F) to the state of California on the
following six issues: (1) Implementation of the Affordable
Care Act (“Obamacare”), (2) Quality of K-12 public educa-
tion, (3) Affordability of state colleges and universities, (4)

1 This study was approved by our Human Subjects commit-
tee as per IRB Protocol 2014-01-5918.



Access to state services for undocumented immigrants, (5)
Laws and regulations regarding recreational marijuana, and
(6) Marriage rights for same-sex partners. Grades (Ratings)
are assigned on a thirteen point scale (A+,A,A-,... D-F).
These issues are posed in a fixed order each with the same
input scale. Participants submit ratings using a click-and-
drag slider interface as illustrated in Figure 2. On mobile
devices, participants touch and drag to indicate the desired
rating.
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Figure 2: After entering their rating, the median
rating over all participants is revealed. Participants
have the option to change their rating after seeing
the median.

Upon release of the slider, the CRC reveals the median
for that issue over all prior participants. Even after the
median is revealed the slider is still active and participants
can change their ratings. However, it is important to note
that participants were not explicitly told that they could
change their rating. Another important observation is that
participants who accessed the application at different times
may have seen different medians as they were calculated
based on the data up to that point. We recorded the initial
rating, the median that the participant observed, and any
subsequent changes along with timestamps for each of the
events. Rating all of the six issues was not mandatory and
participant had the option to skip any of the issues. To
analyze this data, we mapped these 13 grade values linearly
onto a scale from 0 to 1, with 1 being an A+ and 0 being
an F.

3.2 Notation

Let P denote the set of all participants. For each partic-
ipant p; € P, we associate a 3-tuple of ratings (g;[j], m[j],
gr[7]) which represent the initial rating, median observed
by the participant, and the final rating. For each issue, we
divided the participants into three subsets of P: ones who
did not change their ratings P,, ones who changed P., and
ones who skipped the question Ps. Our primary objective
is to test the distributional properties of rating tuples from
participants in P,, compared to those in P..

To ensure that all participants in the set P. had an op-
portunity to see the median and then react, we filtered this
group using the timestamps. The median appears in the
interface with an animation whose completion time varied
between devices, so we set a grace period of 3 seconds before
we categorized the participant into set P..

For consistency, we use the same notation to describe par-
ticipants in the reference survey. We denote the set of ref-
erence survey participants as set R, and each participant is
associated with a 3-tuple (g:[j], m[j], gr[j]). However, since
the reference survey does not reveal the median g;[j] = g¢[J]
and m[j] is the hypothetical median of the prior participants
(which is not shown).

4. ANALYSIS PHASE

In the analysis phase, we determine whether social in-
fluence bias is statistically significant by analyzing spread of
ratings around the median for the participants that changed
their ratings. There are three principle challenges in test-
ing this hypothesis. The first challenge is that parametric
significance tests comparing two sample means such as the
two sample t-test and z-test are known to perform poorly for
multimodal and discrete distributions. Another significance
test that is commonly applied to compare spreads of distri-
butions is the F-test, which is also known to perform poorly
for many non-normal distributions [20]. Furthermore, this
test is usually used to test the spread of data around the
mean, which only in very special conditions, such as normal
distributions, aligns with the median which is the parameter
of interest in the CRC. The discreteness of our data leads
to multi-modal distributions which are not optimal for these
testing methods.

The second challenge is that there is a natural tendency
for ratings to concentrate around the median even with-
out a bias. Consider the following participant behavioral
model. Suppose that participants are not accustomed to a
slider-based input. We can model the first rating that the
participant leaves as uniformly randomly anywhere on the
slider. As the participant begins to understand how to use
the slider, their use becomes more accurate, ultimately set-
tling on a rating from our observed distribution of final rat-
ings. This model, the first rating is uniformly random and
the second rating is a sample from the observed distribution,
would result in a strong regression towards the median; even
if there is no causal link with seeing the median.

Finally, the median m; changes as ratings arrive and thus
can be different for each participant. The median rating
is calculated over all prior participants and thus is depen-
dent on when the participant submitted their first rating.
In practice, the median will eventually converge for a large
number of participants, but it would be incorrect to measure
concentration around a final median.

To address these three challenges, we propose a nonpara-
metric model based on the Wilcoxon statistic to test the
hypothesis that the group of participants that changed their
ratings are more tightly centered around the median value
that those participants observed. Our tests compare abso-
lute deviations around the median for P,, P., and R; which,
as a relative comparison, controls for the natural tendency
for ratings group around the median. Furthermore, it is
more robust to the effects of alternate models such as the
one described in our second challenge in comparison to a
direct test of correlation (see Section 6.2.1).

4.1 Non-parametric Significance Test

Recall that P, is the set of participants that did not
change their ratings and P. be the set of participants that
changed their ratings. We define a set X, X,, of absolute
deviations from the observed median of the final rating for
each group:

Xe = {Imlj] — gsljll} Vi € Pe (1)

X = {Imlj] — grljll} Vi € Pa 2
For the purposes of hypothesis testing, we ignore the sign
of the deviation. However, in Section 5, where we build a
predictive model for the changes, we include the sign.

Now, for the set X., we calculate the Wilcoxon rank-sum
statistic. We assign a rank to each of the absolute deviations
in the union set X = X. U X,, (ie. the largest change has
rank 1 and the smallest has rank | X.UX,|. For X, we sum



the ranks of the deviations within its set:
We= > R, (3)
JEP:

The Null Hypothesis is that absolute deviations in X. are
the same size as X,,. Under this null hypothesis median(X5,)
median(X.), the ranks will be evenly distributed between
each group. Therefore, the null expected value and variance
of W is:

E(W) = M (4)
var(W) = (X +1) iLXJ [ Xl (5)

For the significance level «, we can test the probability that
our calculated W, comes from the null distribution. In other
words, the test calculates the probability that a random
subset of users (ignoring the categorization P, and P.) can
have the observed difference in rank-sum values. A signif-
icant result means that for the participants that changed
their ratings the changed changes are more tightly centered
around the median they observed. For many distributions,
the Wilcoxon statistic is more robust as it uses ranks rather
than the actual values, making it more resilient to outliers.
Even in the case where the data is normally distributed,
the optimal condition for the t-test, the relative efficiency of
the Wilcoxon rank-sum statistic compared to the typically
used t-statistic is % = 95.4%. We tradeoff a small amount
of efficiency in the normally distributed case, for increased
efficiency and robustness in many non-normal distributions
(eg. exponential 3x more efficient). Recommender system
data is almost always collected from discrete inputs which
are usually not normally distributed.

The same analysis can be used to test X. against the
absolute deviations in the reference survey X,

Xr ={lmlj] - giljll} Vi € R (6)
or for initial vs. final ratings in the change group X_.:
Xe = {Imlj] - gils]} Vj € P (7)

4.2 Quantifying Concentration of Ratings

In addition to testing social influence bias, we can also
estimate by how much the absolute deviations differ. The
Wilcoxon statistic can be inverted to estimate a most likely
shift parameter A, that is a shift A in the distribution of ab-
solute deviations X. that maximally aligns them with X,.
In other words, X. + A is most supported by the null hy-
pothesis (no social influence bias), or the distance from this
hypothesis. An intuitive interpretation of A is that it mea-
sures how much our deviations have to be increased so that
the no social influence bias hypothesis is the most likely con-
clusion. Since X. is a set of absolute deviations, A tells us
how much more concentrated X. is than X,, around the ob-
served medians. This parameter is relevant to the design of
recommendation algorithms use similarity (eg. clustering or
nearest neighbors), as it characterizes how much more on
average are participants closer to the median.

We refer to [17] on the derivation of A and its confidence
interval:

D = A{zn[j] — welil} Vi,j € Xn, Xe (8)
A = median(D) 9)

5. BIAS MITIGATION

In our learning phase, we collect rating triplets (g:[j], m[j],
gr[7]), and in our analysis phase, we determine whether the
triplets exhibit statistically significant social influence bias.
In the mitigation phase, we propose two models: correction

model (infers the initial rating given a final rating and the
median), and a prediction model (predicts final ratings given
an initial rating and the median). Once trained, the correc-
tion model can be applied to correct final grades collected
without the triplet (either historical or post-learning). The
prediction model can be used to analyze properties of the so-
cial influence bias eg. are ratings above the median affected
the same way as ratings below the median.

Previous work, suggests that social influence is not a ho-
mogeneous bias, namely, positive influences are different
from negative influences. In Muchnik et al. [22], they found
that when they positively treated posts with higher up-vote
counts it lead to a significant increase in the likelihood of
additional up votes (32% more likely). On the other hand,
they argue negative treatments inspired correction behav-
ior; where some participants wanted to correct what they
felt was an incorrect score. They found that this also in-
creased the likelihood of up-voting (88% more likely); as op-
posed to the conforming response which would be increased
down-votes.

These results suggest that the effects of viewing median
ratings can be non-linear and are very context/question de-
pendent. Similar to the previous section where we applied
non-parametric tests that did not make a strong assump-
tion about the distribution of the data, we propose a infor-
mation theoretic polynomial function search that does not
make strong assumptions about the nature of the relation-
ship.

5.1 Correction Model

Recall that g¢[j] is the final rating for participant j, and
m[j] — gi[j] is the difference between the median and the
initial rating. We want to find a polynomial function f such
that:

f(grld]) = mlj] — gils] (10)
Let f € P* be a polynomial of degree k. The square loss of
f, is the error in predicting m[j] — g:[j] from f(gy[j]):

L(Xe; f,k) = ((mlj] = gild) — f(gs0i])° (11)
J
For a given k, the best-fit polynomial minimizes this square-
loss:

fo = argmfin[,(Xc;f, k) (12)

For a given k, this problem can be solved with least squares.
To search over the space of polynomial models, we apply a
well-studied technique called the Bayesian Information Cri-
terion (BIC) [8,26]. This technique converts the optimiza-
tion problem into a penalized problem that jointly optimizes
over the “complexity parameter” k. This penalty can be
interpreted as bias towards lower degree models, in other
words, an Occam’s Razor prior belief. Cross-validation is an
alternate method to empirically determine optimal model,
and in practice, they give very similar results. BIC, however,
is derived through maximum likelihood estimate and is not
an empirical estimate so the learned model has a notion of
optimality conditioned on the BIC prior belief.

Thus, we reformulate the optimization problem in the fol-
lowing way to incorporate the BIC penalty:

arg min | Xc[ log(L(Xe; f, k)) + klog(|Xe]) (13)

The resulting optimal polynomial will tell how to correct a
final rating to infer the initial one. Let q:

q(4) = mlj] = f(gr5]) (14)
the predicted initial grade, and this value can be the input
to our recommendation algorithm.



5.2 Applying the Corrections

There are two ways in which we can apply the correction
model to existing recommender systems data. First, we can
train our correction on all triplets, including ones that did
not change, to get a correction that we can then apply to
all ratings in the post-learning phase. The second way is to
estimate the probability that a rating is changed, and if that
probability is above a threshold « (eg. 50%) we can apply
the correction. With the second way, the correction model
is only trained on those triplets where the initial rating is
different from the final one. To estimate this probability, we
can apply a logistic regression model to predict whether or
not a rating has been changed from all other ratings. Let
(%, 7) be 1 if participant j changed his or her rating for issue
i and O if not. Our feature vector is the vector of all final
ratings for that participant v[j]; = [g}[j], ..., g%[j]]. Then,
for the learned regression weights ,B, we can estimate the
probability that ¢(i,7) = 1, using the logistic function:

. 1
P[C(Zvj) - 1] - e_ﬁTU[j]f
We include results from both approaches in our experiments.

5.3 Prediction Model

For the prediction model, we make the dependent variable
m[j] — g:[j] and the independent variable gf [7] — 9il7]- We
apply the polynomial regression with the BIC optimization
as before, and find an optimal function f such that
f(mlj] = gili]) = g14] — 9:lJ] (16)
f is a function of the difference between the initial rating and
the median, that predicts the change in rating. This model
allows us to reason about the nature of the social influence
bias in the system. For example, if |f(z)| > |f(—=x)| for
xz > 0, we know that ratings above the median lead to a
larger rating change. Additionally, f’'(z) tells us how the
change varies as the observed difference with the median
increases.

(15)

6. RESULTS

6.1 Dataset Description

The data for our case study was collected from the Cali-
fornia Report Card between January 18th to April 20th. We
also conducted an independent reference survey using Sur-
veyMonkey’s paid random panel system between March 8th
and March 14th. As mentioned, ratings of six political issues
were collected on a 13-point letter grade scale (A+,A,...,F)
and for analysis we mapped these ratings linearly onto a
scale from 0 to 1, with an F as 0 and A+ as 1. Participants
also had the option to “skip” issues (not assign a grade).
There were 1575 participants from the CRC and 611 partic-
ipants from SurveyMonkey. Rating activity is summarized

below.
Issue | No Change | Change | Skip | Median
CRC
Obamacare 749 223 593 | B (0.6667)
K12 849 172 544 | C+ (0.5000)
College 923 139 503 C- (0.3333)
Immigration 693 105 767 | C (0.4167)
Marijuana 381 118 566 | C (0.4167)
Marriage Rights 929 105 531 | B+ (0.7500)
Reference
Obamacare 498 - 113 | B (0.6667)
K12 561 - 50 | C (0.4167)
College 573 T 38 | C- (0.3333)
Immigration 375 - 236 | C+ (0.5000)
Marijuana 498 - 113 | C (0.4167)
Marriage Rights 554 - 57 | B+ (0.7500)

For any given political issue, between 10% and 20% of
those who assigned ratings registered a rating change. In all,
556 out of the 1575 CRC participants changed their rating
at least once (Figure 3). We also found that the aggregate
results of the reference survey matched the CRC nearly per-
fectly. On only two of the question (K12 and Immigration),
we found a observed differences which were both less than a
letter grade (4 or -).
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Figure 3: Among CRC participants, 65% changed
none of their ratings, 22.0% changed one rating,
8.6% changed two, and 6.5% changed three or more.
The lower figure inducates that majority of rating
changes were towards the median.

6.2 Analysis

6.2.1 Correlation vs. Absolute Deviation

In Section 4, we argued that using correlation as a test
statistic can lead to erroneous conclusions of social influence
bias, and proposed testing the absolute deviations around
the median. We ran an experiment to illustrate the prob-
lems of using correlation instead of absolute deviation. In
this experiment, we iterated through the initial ratings each
of participants in the change group P.. For each rating, we
randomly sampled a final rating from group P,, the ones
that did not change. In this model, since we sample final
ratings from the no change group, we know that the social
influence bias hypothesis is not true, since in distribution
those who changed their ratings and those who didn’t are
exactly the same. However, when we calculate the correla-
tion coefficient between gr[j] —m/[j] and g:[j] — m[j], we find
statistically significant correlations.

Issue | corr | p-val
Obamacare | 0.709 5.2e-56
K12 | 0.659 | 4.73e-38

College | 0.673 | 2.26e-36
Immigration | 0.704 | 2.95e-32
Marijuana | 0.689 | 1.42e-34

Marriage Rights | 0.679 | 3.27e-41

There is a natural tendency for ratings to group around
the median and the correlation coefficient does not account
for this. However, if we measure the absolute deviation, we
will find there is no statistically significant difference be-
tween the absolute deviations since they are the same in
distribution.

6.2.2 Significance in CRC

Using the non-parametric test proposed in Section 4, we
tested the hypothesis of whether rating changes led to signif-



icantly more concentration around the median. In our first
experiment (Figure 4), we tested the absolute deviations of
the CRC participants. We compared the group of partici-
pants that did not change their ratings to the group that
changed their ratings. We found that while there were no
statistically significant differences between the initial ratings
of the two groups, the final ratings of the group that changed
were statistically significantly more concentrated than both
their own initial ratings and the ratings of the no change
group. On average, the ratings were 19.3% closer to the me-
dian in the change group. The results of the hypothesis test
for the set of participants who changed their ratings P. and
those who did not P, are (we denote initial grades from P.
as ¢ and final as f):

Mean Absolute Deviations

Il No Change Group
[l Change Group Initial
[__JChange Group Final
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Figure 4: For those participants that changed their
ratings, final ratings were significantly more concen-
trated around the median than their initial ratings.
In addition, these ratings are more concentrated
than the ratings for those who didn’t change.

Issue | p-val(P; vs. P,) | p-val(i vs. f)

Obamacare 0.0286 0.0161
K12 2.1314e-06 0.0086

College 1.3033e-04 0.0415
Immigration 7.3456e-07 4.4170e-05
Marijuana 2.7549e-10 4.2560e-05
Marriage Rights 3.5946e-06 2.4644e-10

These results are consistent with social influence bias.
When participants change their ratings, they are more likely
to concentrate around the median. What is particularly sur-
prising is that the two groups of participants P,, and P. are
very similar in terms of initial ratings, and the data suggests
that a participant’s susceptibility to social influence is not
correlated with initial ratings.

6.2.3 Comparison to Reference Survey

In our second experiment (Figure 5), we apply the same
testing procedure to compare the ratings from the CRC to
to those in the reference survey. We compare absolute devi-
ations of the group of participants who changed their ratings
in the CRC against participants from the reference survey.
The final ratings were 12.0% closer to the median in the CRC
change group than in the reference survey. We also found
that there was no statistically significant difference between
the reference survey and initial ratings. The results of the
hypothesis test for the set of participants who changed their
ratings P. and the reference group R are (we denote initial
grades from P, as i and final as f):

Issue | p-val(R vs. 3) | p-val(R vs. f)

Obamacare 0.5386 0.0015

K12 0.8283 0.0097

College 0.1452 0.0091
Immigration 0.3765 1.1787e-04
Marijuana 0.7288 9.3111e-06
Marriage Rights 0.2478 0.0161

The results of our two experiments are consistent with
social influence bias. We not only found that participants’
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Figure 5: We found that final ratings were signifi-
cantly more concentrated in the CRC compared to
ratings in the reference survey. Similar to Figure 4,
we found that there was no statistically significant
difference between the reference survey and the ini-
tial ratings.

changed ratings were statistically significantly more likely to
concentrate around the median, they were also more likely
in comparison to the reference survey.

6.2.4 Estimating the Distance From the Null Hypoth-

ests
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Figure 6: We calculate the shift-parameter A which
is the distance from the null hypothesis. Over all is-
sues, we found that ratings the average A was 0.0972
corresponding to a little more than a +/- grade.

We tested the hypotheses and conclude significant addi-
tional concentration of ratings around the median. In Sec-
tion 4, we described how we could use the results of the
hypothesis test to estimate the A parameter, which quanti-
fies how different the hypothesis is from the null distribution
(no social influence bias). In other words, how much would
we have to spread our ratings around the median to negate
the significant biasing result. We use A as a measure of
social influence bias.

In Figure 6, we show the A estimates for each of the issues.
For the issue about Marriage Rights, we find that parame-
ter is largest at 0.1667. This means that all the final ratings
for the Marriage Rights issue would have to be changed by
0.1667, corresponding to 2/3 of a letter grade eg. difference
between B and A-, for us to conclude that there is no so-
cial influence bias in the dataset. For the other issues, the
parameter was smaller indicating less of an effect of social
influence bias. On average over all issues, the ratings were
0.0972 to a little more than a +/- grade.

6.3 Mitigation

6.3.1 Correction Model

We train the polynomial /BIC correction model proposed
in Section 5, and evaluated it in terms of RMSE (Figure
8). We held out a random 20% of rating triplets and calcu-
lated the inference error in the correction model. We found
that on average over all issues the RMSE was 0.1286 which
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Figure 7: For the participants that changed their ratings, we plot the difference between their rating and
the median (X-axis), and the change in their rating (Y-axis). We overlay the optimal polynomial model to
represent the relationship f(z) = y. Below each plot, is the BIC objective function showing how we picked an

optimal degree of polynomial.

corresponds to a little bit more than a 4+ or - grade. We
also measured the performance of the correction model by
re-calculating the A, for the inferred initial ratings. A A of
0 means that the null hypothesis of no social influence bias
is the most likely hypothesis, thus indicating perfect correc-
tion. We found that there was on average a 76.3% reduction
in A.
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Figure 8: We measured the RMSE prediction error
of the polynomial model. We found that we could
predict changes in all of the issues with less than 2/3
of a letter grade RMSE error. In the lower figure, we
applied this model to correct for the social influence
bias and found that, on average, we could reduce
the effects by 76.3%
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6.3.2 Classifying Final Grades As Changed

In Section 5, we discussed how we could use logistic re-
gression to estimate the probability that a rating has been
changed. We applied logistic regression, as described in that
section, and inferred which ratings were changed. In Figure
9, as is typically used to evaluate binary classifiers, we show
the ROC plot of the logistic regression predictor. The pre-
diction results were quite accurate with average AUC score
over all issues of 0.8670. At the .50 probability threshold
(classified as changed if the estimated probability is greater
than 0.5), we achieved an average precision of 84.7% and a
recall of 70.0%.

6.3.3 Prediction Model

ROC Grade Change Predictor
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Figure 9: We show an ROC plot for the logistic
regression estimate of the probability the rating has
been changed. This plot shows the true positive
rate (correct classifications) as a function of the false
positive rate. We find that our prediction is quite
accurate, substantially better than random (dashed
line) with an average AUC score of 0.8670.

We applied the prediction from Section 5 and the results
are shown in Figure 7. Our model search and optimization
through the BIC discovered that for four out of the six issues,
K12, College, Immigration, and Marijuana, the model was
linear. This suggests homogeneity in positive and negative
social influence effects for these issues. What this implies
is that on average participants who rated above the median
and below the median moved towards the median with the
same magnitude. However, for Obamacare and Marriage
Rights, we found that the relationship was quadratic. In-
terestingly enough, over the domain of changes, the learned
quadratic function was “almost” linear, but with a steeper
curve for ratings above the median. Participants who ini-
tially rated the state higher than the median had a more
significant tendency to change downwards, in comparison
to the upward tendency of those who rated less than the
median.

6.4 How Many Training Examples?

It is important to note that our training set sizes were
relatively small. Even with this small size, we were able to
find an accurate correction model. The caveat is that only
a fraction of participants will actually change their ratings
during the learning phase. In Figure 10, we plot the opti-



mality of the test error as a function of training set size for
the correction model. We define the optimality percentage
to be the ratio of the current test error to the best possi-
ble test error (test error using all 80% of the training set).
We averaged the results over 1000 trials randomly picking
a different 80% for training and 20% test. We found that
a surprisingly few training examples could get a reasonably
accurate model. For the linear models, we found that we
could achieve greater than 95% optimality with only 25 ex-
amples. For the quadratic models, we required a little bit
more data for the same optimality.
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Figure 10: We find that we can train our correction
model on less than 50 examples and get a model that
on average performs only 5% worse than a model
trained on the full training set. In the second plot,
we plot p-values of our significance test as a function
of training set size. We find for 5 out of 6 issues we

could reject the null with less than 100 examples.

We can also look at the relationship between training set
size and the analysis phase, where we are testing the sta-
tistical significance of the spread of the ratings around the
median. Specifically, we can measure the average number
of training examples needed before we can reject the null
hypothesis at p < 0.05. In this dataset, we find that deter-
mining the significance of social influence bias requires more
training examples than predicting its effects.

7. CONCLUSION AND FUTURE WORK

These results suggest that social influence bias can be sig-
nificant in recommender systems and that this bias can be
substantially reduced with machine learning. To apply this
methodology to other recommender systems, a key question
for future work is how is how to extend the approach to large
item inventories and how much training data is required in
such cases. One idea is to cluster/classify items into a small
number of representative categories and train a model for
each category. We believe that selecting an optimal set of
items for training in this context may be posed as a submod-
ular maximization problem. We are looking at applying this
methodology to recommender systems in other domains (eg.
movies) with alternative regression methods, such as Gaus-
sian Process Regression and LOESS. We are also interested
in performing more user studies where a false median is pre-
sented (as in the Asch experiments) and exploring methods
to optimally classify participants as conformers and non-
conformists. We would also like to study and quantify the
role of social influence on textual data. textual data.
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