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Abstract

Existing industrial parts feeders move parts through a sequence of mechanical �lters that reject

parts in unwanted orientations. These feeders require the design of specialized devices such

as ba�es, cutouts, nests, or traps for each part. In this paper we describe a programmable

apparatus that uses a vibrating surface for sensorless, non-prehensile manipulation, where parts

are systematically positioned and oriented without sensor feedback or force closure. The idea

is to generate and change the dynamic modes of a vibrating surface. Depending on the node

shapes of the surface, the position and orientation of the parts can be actively controlled. Our

research goal is to develop a science base for manipulation using programmable force �elds.

The vibrating surface creates a two-dimensional force vector �eld. By chaining together

sequences of vector �elds, the equilibrium states of a part in the �eld can be cascaded to obtain

a desired �nal state. We describe e�cient polynomial-time algorithms that generate sequences

of vector �elds for sensorless positioning and orienting of planar parts, and we show that these

strategies are complete. Finally we consider parts feeders that can only implement a �nite set

of vector �elds. We show how to plan and execute strategies for these devices, and discuss the

tradeo� between mechanical complexity and planning complexity.

1 Introduction

It is often extremely costly to maintain part order throughout the manufacture cycle. For example,

instead of keeping parts in pallets, they are often delivered in bags or boxes, whence they must

be picked out and sorted. A parts feeder is a machine that orients such parts before they are fed

to an assembly station. Currently, the design of parts feeders is a black art that is responsible for

up to 30% of the cost and 50% of workcell failures [32, 9, 21, 41, 42]. \The real problem is not

part transfer but part orientation.", Frank Riley, Bodine Corporation [39, p.316, his italics]. Thus

although part feeding accounts for a large portion of assembly cost, there is not much scienti�c

basis for automating the process.

�A brief preliminary version of this paper was presented at the International Conference on Robotics and Au-

tomation (Nagoya, Japan, April 1995).
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The most common type of parts feeder is the vibratory bowl feeder, where parts in a bowl are

vibrated using a rotary motion, so that they climb a helical track. As they climb, a sequence

of ba�es and cutouts in the track create a mechanical \�lter" that causes parts in all but one

orientation to fall back into the bowl for another attempt at running the gauntlet [9, 39, 40]. To

improve feed rate, it is sometimes possible to design the track so as to mechanically rotate parts

into a desired orientation (this is called conversion). Related methods use centrifugal forces [21],

reciprocating forks, or belts to move parts through the �lter [37].

Sony's APOS parts feeder [26] uses an array of nests (silhouette traps) cut into a vibrating

plate. The nests and the vibratory motion are designed so that the part will remain in the nest

only in one particular orientation. By tilting the plate and letting parts ow across it, the nests

eventually �ll up with parts in the desired orientation. Although the vibratory motion is under

software control, specialized mechanical nests must be designed for each part [31].

The reason for the success of vibratory bowl feeders and the Sony APOS system is the underlying

principle of sensorless manipulation [19] that allows parts positioning and orienting without sensor

feedback. The theory of sensorless manipulation is the science base for developing and controlling

such devices.

Despite their popularity, all vibratory feeders mentioned so far have some disadvantages:

1. Parts may get wedged or entangled in �lters.

2. Parts may get damaged when dropping back into the bowl, or worn by repeated rejections.

3. Each �lter reduces the feed rate, depending on the ratio between rejected and accepted parts.

4. The �lters must be redesigned for each new part geometry, a task that usually requires skilled

work by human experts.1

In the early 1980's, several researchers used sensors to determine the pose of parts delivered by

a vibratory track [37]. Sensors such as tactile probes [23, 48], photocells [24], �beroptic sensors [33],

and machine vision systems [25, 44] were employed. Once part pose was determined, air-jets and

trapdoors were used to group parts in similar poses.

Singer and Seering [42] proposed several designs for parts feeders where programmed vibration

was used to drive parts into a stable con�guration. Their methods can be useful for bringing

parts into one of several poses where its center of mass is as low as possible. Swanson, Burridge,

and Koditschek [45] and Tran, Chan, and Hayward [47] used vibrating surfaces for parts feeding

strategies, and achieved dynamic equilibrium states to pose parts.

In this paper, we explore how controlled vibration can be used for a new setup to systematically

feed planar parts (i.e. parts with extruded polygonal shapes and low aspect-ratio). The idea is to

generate and change dynamic modes in a plate by varying applied frequencies. Depending on the

frequency of vibration and the boundary conditions, nodes of di�erent shapes are formed. If planar

parts are put on this vibrating plate, they move to the node, and end up in a stable orientation [5].

We develop an analysis whereby given the shape of the node, and the part geometry, the �nal

orientation can be predicted. For our device, we further propose a \sensorless" strategy for part

manipulation [19], building on the theory originally developed for feeding parts using parallel-jaw

grippers [22], which was recently extended to arrays of microactuators and programmable force

�elds [8, 7]. Note that manipulation with force �elds is a form of non-prehensile manipulation [16,

49, 20, 18, 13]: parts are manipulated without form or force closure.

1Caine [11] presented an experimental CAD system that assists the construction of track �lters for vibratory bowl

feeders.
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In robotics, minimalism [12, 6] has become increasingly inuential. Minimalism begins with the

proposition that doing task A without resource B is interesting, because doing so proves that B is

somehow inessential to the information structure of the task. Thus, minimalism attempts to reduce

the resource signature [6] for a task. Taking the \transitive closure" of this proposition would result

in �nding the minimal con�guration of resources required to solve a task. Marc Raibert [34] showed

that running machines could be built without static stability. Erdmann and Mason [19] showed how

to do dextrous manipulation without sensing. Tad McGeer [29] built a biped, kneed walker without

sensors, computers, or actuators. Rod Brooks [10] has developed online algorithms that rely less

extensively on planning and world models. Canny and Goldberg [12] have demonstrated robot

systems of minimal complexity. Donald et al. [16, 6] have built distributed teams of mobile robots

that cooperate in manipulation without explicit communication. The manipulation algorithms

presented in this paper attempt to minimize the sensor input and the required hardware.

Our results on equilibrium analysis, planning and manipulation strategies, and computational

complexity devolve to an application of the theory of programmable vector �elds developed by

B�ohringer and Donald [7]. This paper applies their algorithmic framework to a new class of vibra-

tory devices. The main characteristics of our device are:

� simple design, with no mechanical �lters (addressing disadvantages 1 { 3)

� programmability (addressing problem 4).

Section 2 gives an overview on our research agenda, from the basic ideas of sensorless manip-

ulation using programmable vector �elds, to the use of discrete force �elds. Section 3 describes

the design of our devices, and the performed experiments. In Section 4 we �rst investigate the

dynamics of small particles on the plate, to deduce the approximate nature of the e�ective force

�eld generated by the vibrating plate. Then we discuss the dynamic behavior of planar objects in

such a force �eld. In Section 5, this model is used to predict the stable rest con�gurations (equilib-

ria) for parts on the vibrating plate, and the predictions are compared with experimental results.

Section 6 presents manipulation grammars, and demonstrates how they can be used to program

our device for sensorless manipulation tasks. We close by giving an outlook on future work and

open problems.

2 Research Agenda: Scienti�c Issues

In a programmable force vector �eld, the forces generated at each point of the �eld can be con-

trolled independently. Programmable force vector �elds can be used to control a variety of exible

planar parts feeders. These devices can exploit exotic actuation technologies such as arrayed, mi-

crofabricated motion pixels [8, 43] or, in the case of this paper, transversely vibrating plates. These

new automation designs promise great exibility, speed, and dexterity | we believe they may be

employed to orient, singulate, sort, feed, and assemble parts (see for example Figures 1 and 8).

However, since they have only recently been invented, programming and controlling them for ma-

nipulation tasks is challenging. Our research goal is to develop a science base for manipulation

using programmable force �elds.

Since the eighteenth century scientists have studied vibrating plates, which cause particles on

the plate to arrange along vibratory nodes in so-called Chladni2 �gures [14]. These nodes in the

2After the German physicist Ernst Chladni, 1756{1827, whose objective was a schematic approach to the con-

struction of better musical instruments.
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(a)

(c)

(b)

Figure 1: Sensorless sorting using programmable force vector �elds: parts of di�erent sizes are �rst

centered and subsequently separated depending on their size.

force �elds depend to a large extent on the vibration frequency, and on the location of clamped

and free plate edges. Hence by changing the input frequency, or adding software-controlled clamps,

speci�c force �elds can be generated.

When a part is placed on our devices, the programmed vector �eld induces a force and moment

upon it. Over time, the part may come to rest in a dynamic equilibrium state. In principle, we have

tremendous exibility in choosing the vector �eld, since using software-controlled vibratory devices,

the force �eld may be programmed in a fairly �ne-grained fashion. Hence, we have a lot of control

over the resulting equilibrium states. By chaining together sequences of vector �elds, the equilibria

may be cascaded to obtain a desired �nal state | for example, this state may represent a unique

orientation or pose of the part. A system with such a behavior exhibits the feeding property [2]:

A system has the feeding property over a set of parts P and a set of initial con�gurations

I if, given any part P 2 P , there is some output con�guration q such that the system

can move P to q from any location in I.

This paper �rst describes our experimental devices and a technique for analyzing them called

equilibrium analysis . Then we describe new manipulation algorithms using these tools, and we

relax earlier dynamic and mechanical assumptions to obtain more robust and exible strategies.
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2.1 From Continuous Squeeze Fields to Discrete Manipulation Grammars

2.1.1 Sensorless Manipulation Using Continuous Squeeze Fields

We develop our results as follows: In order to discuss planning and control algorithms for the

vibrating plate device, �rst, we make some idealizing assumptions about the kinds of �elds it can

implement. In particular, we initially assume that it can implement a continuum of \squeeze

�elds." Next, we further develop a particular simpli�ed dynamic model, called 2Phase, in which

translation and rotation are essentially \decoupled." We then carefully de�ne the computational

problem of synthesizing control strategies guaranteed to orient a part from any initial con�guration.

We �nd that motion plans with a simple structure su�ce.

With current vibratory devices, the rich \vocabulary" required for this idealized model is not

attainable. Therefore, we show how our approach generalizes to the practical limitations of our

devices, and, in the process, relax our assumptions to include a more realistic dynamic model.

2.1.2 Generalizing to Discrete Manipulation Grammars

We now make the research agenda of Section 2.1.1 precise, and give the reader an overview of our

technical results. Previous results on array and force �eld manipulation strategies may be formalized

using equilibrium analysis. In [8], B�ohringer and Donald proposed a family of control strategies

called squeeze patterns and a planning algorithm for parts-orientation. This �rst result proved an

O(n2) upper bound on the number E of orientation equilibria of a non-pathological (see Section 5.1)

planar part with n vertices. This yields an O(E2) = O(n4) planning algorithm to uniquely orient

a part, under certain geometric, dynamic and mechanical assumptions. The strategies employed

by these algorithms require signi�cant mechanical and control complexity | even though they

require no sensing. The requisite degree of controllability does not exist yet for vibrating plates.

For this reason, we introduce and analyze strategies composed of �eld sequences that we know are

implementable using current vibrating plate technology. Each strategy is a sequence of pairs of

squeezes satisfying certain \orthogonality" properties. Under these assumptions, we can ensure

(a) equilibrium stability,

(b) general �rst-order dynamics and simple force vector �elds, and

(c) complexity and completeness guarantees.

The framework is quite general, and applies to any set of primitive operations satisfying certain

\�nite equilibrium" properties | hence it has broad applicability to a wide range of devices. In

particular, we view the restricted class of �elds as a vocabulary and their rules of composition as a

grammar , resulting in a \language" of manipulation strategies.

Finally, our �nite manipulation grammar has the following advantage over previous manipula-

tion algorithms for programmable vector �elds: previous algorithms such as those described in [8]

guarantee to uniquely orient a part, but the translational position of the part is unknown at the

strategy's termination. Our new algorithms guarantee to position the part uniquely (up to part

symmetry) in translation as well as orientation space. Like the algorithms in [8, 7], the new al-

gorithms require no sensing, and work from any initial con�guration to uniquely pose the part.

In particular, the initial con�guration is never known to the (sensorless) execution system, which

functions open-loop.

The complexity and completeness guarantees we obtain for manipulation grammars are weaker

than for the general squeeze �eld strategies. For squeeze strategies, we apply the algorithmic
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Figure 2: Schematic of experimental setup 1: A 50 cm�40 cm aluminum plate is forced to oscillate

horizontally by the shaker armature. The forced oscillation causes a transverse vibration of the

plate.

theory of [7] to show that any non-pathological planar part with �nite area contact can be placed

in a unique orientation in O(E) = O(n2) steps. Under the manipulation grammar, our planner

is guaranteed to �nd a strategy if one exists (if one does not exist, the planner will signal this).

However, it is not known whether there exists a strategy for every part. This lack of completeness of

manipulation grammar strategies stands in contrast to the complete algorithms of [8, 7] for which a

guaranteed strategy exists for all parts. Moreover, the planning algorithm is worst-case exponential

instead of merely quadratic in the number of vertices of the part.

3 Experimental Observations

3.1 Setup and Calibration

Figures 2 and 3 are schematics of the experimental setup, which consists of an aluminum plate forced

to oscillate in two di�erent con�gurations. The shaker is a commercially available3 electrodynamic

vibration generator, with a linear travel of 0:02m, and capable of producing a force of up to 500N .

The input signal, specifying the waveform corresponding to the desired oscillations, is fed to a

single coil armature, which moves in a constant �eld produced by a ceramic permanent magnet in

a center gap con�guration.

In the �rst con�guration (Figure 2), the plate is attached to the shaker armature such that it is

forced to vibrate in the longitudinal direction (i.e., along the plate axis). For low amplitudes and

frequencies, the plate moves with no perceptible transverse vibrations (i.e., vibrations perpendicular

to the plate). However, as the frequency of oscillations is increased, transverse vibrations of the

plate become more pronounced. The resulting motion is similar to the forced transverse vibration

of a rectangular plate, clamped on one edge and free along the other three sides.

The nodes for these transverse oscillations can either be obtained theoretically (Rayleigh [36],

Timoshenko [46]), or experimentally using the technique originally pioneered by Chladni [14]. By

3Model VT-100G, Vibration Test Systems, Akron, OH, USA.
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Figure 3: Schematic of experimental setup 2: The aluminum plate is hinged and can oscillate about

an axis in its middle.

sprinkling small sized particles4 on a vibrating surface, the nodes can be experimentally identi�ed

as the regions where the particles tend to collect. The dynamics of \collecting" at the nodes is

important in determining the e�ective force �eld that leads to the orienting and localization e�ect

of our device, and is discussed in more detail in Section 4.

For the con�guration in Figure 2, the location and shape of the node depends on the frequency

of vibration. Figure 4 shows experiments to determine the nodes for frequencies of 60Hz and

100Hz .

The second con�guration (Figure 3) forces the plate to undergo transverse vibrations such that

the resulting shape of the node, and its location, are independent of the forcing frequency. The

plate is hinged about an axis situated midway between, and parallel to, two of its sides. A rod

connected to the armature of the shaker forces the plate to an oscillatory motion about the hinged

axis. As expected, experimental determination shows that except for a slight distortion due to the

e�ect of clamping at the rod, the node lines up with the hinge axis (Figure 5).

The second setup is run at lower frequencies, to ensure that only the mode where the plate os-

cillates about the hinge axis is excited. If we increase the operating frequency, modes corresponding

to transverse vibration of a plate, clamped at the point of attachment to the rod and the hinged

ends, become dominant, and the node shape gets complicated. This e�ect can be seen at 20Hz

(Figure 5), where the node shows a tendency to get \pulled" towards the point where the plate is

clamped to the rod.

3.2 Behavior of Planar Parts

If we put planar parts on the vibrating surface, there is a marked tendency for them to move

4Chladni used sand, we use Urad lentils to get a better contrast.
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Figure 4: Experimentally determined nodes at (a) 60Hz and (b) 100Hz , for experimental setup 1

(see Figure 2). After vibrating the plate for a short time, the particles form Chladni �gures, which

indicate the location of the vibrational nodes.

towards the node and end up in one of a �nite number of stable orientations. We observe the

following features over a wide range of frequencies in both the experimental setups:

� From all initial positions on the plate, the objects move towards the node. They end up in a

stable position around some point on the node, which depends on the initial position of the

object.

� As the object approaches the node (as we show later, after some portion of it crosses the

node), there is a tendency for it to rotate until it reaches one of a �nite number of stable

orientations.

Figure 6 shows two planar shapes, a triangle and a trapezoid, after they have reached their

stable position and orientation for the setup in Figure 2. To better illustrate the orienting e�ect,

the curve showing the node has been drawn by hand. Figure 7, similarly shows the stable position

of the planar parts for the second setup (Figure 7).

Over the large number of experimental runs performed, there are a couple of qualitative obser-

vations describing the ease and speed with which the parts get into a stable con�guration:

� At higher frequencies of oscillation, both the velocity of the part towards the node, and the

rate of orientation, are relatively faster.

� Objects with a higher degree of rotational asymmetry get into a stable orientation more easily.

Although the location of the node is better identi�ed in the second setup, the lower operating

frequencies make the localization of the part at the node, and the corresponding orienting behavior,

much slower.

4 Dynamics of Particles and Planar Parts on a Vibrating Plate

The underlying dynamics that causes the objects placed on a vibrating surface to move towards

the node give rise to an e�ective force �eld. In order to develop a theory for using our device as a
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Figure 5: Experimentally determined vibrational nodes at (a) 10Hz and (b) 20Hz , for experimental

setup 2 (see Figure 3).

viable method for sensorless manipulation, it is important to determine the genesis and variation

of this force �eld over the vibrating plate.

4.1 Chladni Figures

When particles are spread on a vibrating surface, they collect at the nodes, resulting in patterns

known as Chladni �gures (after Chladni [14], see Figures 4 and 5). Rayleigh [36] describes the

motion of the particles towards the nodes in the following words { \the movement to the nodes is

irregular in its character. If a grain be situated elsewhere than at a node, it is made to jump by a

su�ciently vigorous transverse vibration. The result may be a movement either towards or from a

node; but after a succession of such jumps the grain ultimately �nds its way to a node".

The forces that cause the particles to move to the node act on any object placed on the vibrating

surface, generating an e�ective force �eld. The underlying dynamics of this phenomenon are very

complex. In Appendix A we give an approach towards an analytical model for the more tractable

case of the planar motion of a particle bouncing on a string in transverse vibration.

4.2 Motion and Equilibria of Planar Parts

The case of general large objects on the plate is more complicated than individual particles, because

the determination of the points on the object that undergo impact, and the resulting impulses, are

both di�cult problems to solve. For our analysis, we ignore e�ects such as rolling and tilting of

the parts and assume that the contact geometry remains constant over the impacts.

We can consider the planar parts as a rigid arrangement of \particles", each of which interacts

with the plate and experiences the e�ective force �eld discussed in Section 4.1. The forces have to

be summed up over the area of contact, giving a speci�c force (per unit area), f , that acts at every

point of the planar object.

Let P be the planar part in contact with the vibrating plate, and c denote the center of mass

of P . The total net force f
P
and moment M

P
around c can be obtained by integrating the force
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Parts

Node

Figure 6: Stable position of planar parts in experimental setup 1, at a frequency of 60Hz . The

node is marked according to Figure 4.

�eld f over the contact surface of P :

f
P

=

Z
P

f dA (1)

M
P

=

Z
P

(r � c)� f dA (2)

Consider a part P on the vibrating plate. We assume that a �rst-order dynamical system

describes the motion of P on the plate. In a �rst-order system, the velocity of a part is directly

proportional to the force acting on it. Hence, an equilibrium is a placement of P such that P

remains stationary. In an equilibrium, the force and moment acting on P are balanced. This

equilibrium condition is met when the net force f
P
and moment M

P
(Equations (1) and (2)) are

both zero.

We have made a series of assumptions to suggest that a force �eld exists for parts on a planar

plate. Our experimental results indicate that they are good engineering assumptions when we

observe the system over time, due to an averaging e�ect caused by the vibration of the plate.

An \exact" modeling of the impact dynamics between part and plate, even though possible (see

e.g. [30, 38]), is not necessary for our purposes.

5 Equilibrium Analysis For Programmable Vector Fields

For the generation of manipulation strategies with programmable vector �elds it is essential to be

able to predict the motion of a part in the �eld. Particularly important is determining the stable

equilibrium poses a part can reach in which all forces and moments are balanced. This equilibrium

analysis was introduced in [8], where B�ohringer and Donald presented a theory of manipulation

for programmable vector �elds, and an algorithm that generates manipulation strategies to orient

polygonal parts without sensor feedback using a sequence of squeeze �elds. We now briey review

their algorithm and its complexity bounds.
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Node

Figure 7: Stable position of planar parts in experimental setup 2, at a frequency of 20Hz . The

node is marked according to Figure 5.

5.1 Squeeze Fields and Equilibria

In [8], B�ohringer and Donald proposed a family of control strategies called squeeze �elds and a

planning algorithm for parts-orientation.

De�nition 1 Assume l is a straight line through the origin. A squeeze �eld f is a two-dimensional

force vector �eld de�ned as follows:

1. If z 2 R2 lies on l then f(z) = 0.

2. If z does not lie on l then f(z) is the unit vector normal to l and pointing towards l.

We refer to the line l as the squeeze line, because l lies in the center of the squeeze �eld.

Assuming quasi-static motion, an object will move perpendicularly towards the line l and come

to rest there. We are interested in the motion of an arbitrarily shaped (not necessarily small) part

P . Let us call P1, P2 the regions of P that lie to the left and to the right of l, respectively, and

c1, c2 their centers of area. In a rest position both translational and rotational forces must be in

equilibrium. We obtain the following two conditions:

I: The areas P1 and P2 must be equal.

II: The vector c2 � c1 must be normal to l.

P has a translational motion component normal to l if I does not hold. P has a rotational motion

component if II does not hold (see Figure 9). This assumes a uniform force distribution over the

surface of P , which is a reasonable assumption for planar parts in surface contact.

De�nition 2 A part P is in translational equilibrium if the forces acting on P are balanced. P

is in orientational equilibrium if the moments acting on P are balanced. Total equilibrium is

simultaneous translational and orientational equilibrium.

Let (x0; y0; �0) be an equilibrium pose of P . (x0; y0) is the corresponding translation equilibrium,

and �0 is the corresponding orientation equilibrium.
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Figure 8: Sensorless parts orienting using force vector �elds: The part reaches unique orientation

after two subsequent squeezes. There exist such orientating strategies for all polygonal parts. See

URL http://www.cs.cornell.edu/home/karl/MicroManipulation for an animated simulation.

De�nition 3 A bisector of a polygon P is a line that cuts P into two regions of equal area.

Proposition 4 Let P be a polygon whose interior is connected. There exist O(k n2) bisectors such

that P is in equilibrium when placed in a squeeze �eld such that the bisector coincides with the

squeeze linen is the part complexity measured as the number of polygon vertices. k denotes the

maximum number of polygon edges that a bisector can cross.

If P is convex, then the number of bisectors is bounded by O(n).

Proof: Omitted for brevity. For a complete proof see URL http://www.cs.cornell.edu/home

/karl/ProgVecFields, or [4]. 2

For most part geometries, k is a small constant.5 However in the worst-case, pathological

parts can reach k = O(n). A (e.g. rectilinear) spiral-shaped part would be an example for such a

pathological case, because every bisector intersects O(n) polygon edges.

5.2 Planning of Manipulation Strategies

In this section we present an algorithm for sensorless parts alignment with squeeze �elds [8, 7].

Recall from Section 5.1 that in squeeze �elds, the equilibria for connected polygons are discrete

5In particular, in [8] we assumed that k = O(1).
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Figure 9: Equilibrium condition: To balance force and moment acting on P in a unit squeeze �eld,

the two areas P1 and P2 must be equal (i.e., l must be a bisector), and the line connecting the

centers of area c1 and c2 must be perpendicular to the node line.

(modulo a neutrally stable translation parallel to the squeeze line which we will disregard for the

remainder of Section 5).

To model their actuator arrays and vibratory devices, the following assumptions are made:

Density: The generated forces can be described by a vector �eld.

2Phase: The motion of a part has two phases: (1) Pure translation towards l until the part

is in translational equilibrium. (2) Motion in translational equilibrium until orientational

equilibrium is reached.

Note that due to the elasticity and oscillation of the actuator surfaces, we can assume continuous

area contact, and not just contact in three or a few points. If a part moves while in translational

equilibrium, in general the motion is not a pure rotation, but also has a translational component.

Therefore, relaxing assumption 2Phase is one of the key results of this paper.

De�nition 5 Let � be the orientation of a connected polygon P in a squeeze �eld, and let us assume

that condition I holds. The turn function t : � ! f�1; 0; 1g describes the instantaneous rotational

motion of P :

t(�) =

8><
>:

1 if P will turn counterclockwise

�1 if P will turn clockwise

0 if P is in total equilibrium (Fig. 10).

See Figure 10 for an illustration. The turn function t(�) can be obtained e.g. by taking the sign

of the lifted moment M
P
(z) for poses z = (x; y; �) in which the lifted force f

P
(z) is zero.

De�nition 5 immediately implies the following lemma:

Lemma 6 Let P be a polygon with orientation � in a squeeze �eld such that condition I holds. P

is stable if t(�) = 0, t(�+) � 0, and t(��) � 0. Otherwise P is unstable.
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Figure 10: (a) Polygonal part. Stable (thick line) and unstable (thin line) bisectors are also shown.

(b) Moment function. (c) Turn function, which predicts the orientations of the stable and unstable

bisectors. (d) Squeeze function, constructed from the turn function. (e) Alignment strategy for two

arbitrary initial con�gurations. See URL http://www.cs.cornell.edu/home/karl/Cinema for an

animated simulation.

Proof: Assume the part P is in a pose (x; y; �) such that condition I is satis�ed. This implies that

the translational forces acting on P balance out. If in addition t(�) = 0, then the e�ective moment

is zero, and P is in total equilibrium. Now consider a small perturbation �
�
> 0 of the orientation

� of P while condition I is still satis�ed. For a stable equilibrium, the moment resulting from the

perturbation �
�
must not aggravate but rather counteract the perturbation. This is true if and only

if t(� + �
�
) � 0 and t(� � �

�
) � 0. 2

Using this lemma we can identify all stable orientations, which allows us to construct the squeeze

function [22] of P (see Figure 10d), i.e. the mapping from an initial orientation of P to the stable

equilibrium orientation that it will reach in the squeeze �eld:

Lemma 7 Let P be a polygonal part on an actuator array A such that assumptions Density and

2Phase hold. Given the turn function t of P , its corresponding squeeze function s : S1 ! S
1 is

constructed as follows:

1. All stable equilibrium orientations � map identically to �.
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(a) Parallel-Jaw Gripper

stable

(b) Squeeze Field

Figure 11: Equilibrium con�gurations for a square-shaped part using (a) a frictionless parallel-jaw

gripper and (b) a MEMS squeeze �eld. In this example, stable and unstable equilibria are reversed.

2. All unstable equilibrium orientations map (by convention) to the nearest counterclockwise

stable orientation.

3. All orientations � with t(�) = 1 (�1) map to the nearest counterclockwise (clockwise) stable

orientation.

Then s describes the orientation transition of P induced by A.

Proof: Assume that part P initially is in pose (x; y; �) in array A. Because of 2Phase, we can

assume that P translates towards the center line l until condition I is satis�ed without changing its

orientation �. P will change its orientation until the moment is zero, i.e. t = 0: A positive moment

(t > 0) causes counterclockwise motion, and a negative moment (t < 0) causes clockwise motion

until the next root of t is reached. 2

We conclude that any connected polygonal part, when put in a squeeze �eld, reaches one of a

�nite number of possible orientation equilibria [8, 7]. The motion of the part and, in particular,

the mapping between initial orientation and equilibrium orientation is described by the squeeze

function, which is derived from the turn function as described in Lemma 7. Note that all squeeze

functions derived from turn functions are monotone step-shaped functions.

Goldberg [22] has given an algorithm that automatically synthesizes a manipulation strategy

to uniquely orient a part, given its squeeze function. While Goldberg's algorithm was designed for

squeezes with a robotic parallel-jaw gripper, in fact, it is more general, and can be used for arbitrary

monotone step-shaped squeeze functions. The output of Goldberg's algorithm is a sequence of angles

that specify the required directions of the squeezes. Hence these angles specify the direction of the

squeeze line in our force vector �elds (for example the two-step strategy in Figure 10e).

It is important to note that the equilibria obtained by a force vector �eld and by a parallel-jaw

gripper will typically be di�erent, even when the squeeze directions are identical. For example,

consider squeezing a square-shaped part (Figure 11). Stable and unstable equilibria are reversed.

This shows that our mechanical analysis of equilibrium is di�erent from that of the parallel-jaw
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gripper. Let us summarize these results:

Theorem 8 Let P be a polygon whose interior is connected. There exists an alignment strategy

consisting of a sequence of squeeze �elds that uniquely orients P up to symmetries.

Since the strategies of Theorem 8 consist of �elds with squeeze lines at arbitrary angles through

the origin, we call them general S1 squeeze strategies, or henceforth general squeeze strategies.

Corollary 9 The alignment strategies of Theorem 8 have O(k n2) steps, and they may be computed

in time O(k2 n4), where k is the maximum number of edges that a bisector of P can cross. In the

case where P is convex, the alignment strategy has O(n) steps and can be computed in time O(n2).

Proof: Proposition 4 states that a polygon with n vertices has E = O(k n2) stable orientation

equilibria in a squeeze �eld (O(n) if P is convex). This means that the image of its corresponding

squeeze function is a set of E discrete values. Given such a squeeze function, Goldberg's algorithm

constructs alignment strategies with O(E) steps. Planning complexity is O(E2). 2

Goldberg's strategies [22] have the same complexity bounds for convex and non-convex parts,

because when using squeeze grasps with a parallel-jaw gripper, only the convex hull of the part need

be considered. This is not the case for programmable vector �elds, where manipulation strategies

for non-convex parts are more expensive. As described in [7], there could exist parts that have

E = 
(k n2) orientation equilibria in a squeeze �eld, which would imply alignment strategies of

length 
(k n2) and planning complexity 
(k2 n4).

Note that the turn and squeeze functions have a period of � due to the symmetry of the squeeze

�eld; rotating the �eld by an angle of � produces an identical vector �eld. Rotational symmetry

in the part also introduces periodicity into these functions. Hence, general squeeze strategies

(see Theorem 8) orient a part up to symmetry, that is, up to symmetry in the part and in the

squeeze �eld. Similarly, the grasp plans based on squeeze functions in [22] can orient a part with

a macroscopic gripper only modulo symmetry in the part and in the gripper.6 Since we reduce to

the squeeze function algorithm in [22], it is not surprising that this phenomenon is also manifested

for squeeze vector �elds as well. For a detailed discussion of parts orientation modulo symmetry

see [22].

5.3 Example: Uniquely Orienting Rectangular Parts

To demonstrate the equilibrium analysis from Section 5.1 and the alignment algorithm from Sec-

tion 5.2, we will generate plans for uniquely orienting several planar polygonal parts (up to part

symmetry). In particular, here we will consider the simple case of three rectangles R10, R20, and

R30, which have sides a and b such that a is 10, 20, and 30 percent longer than b, respectively

(Figure 12).

Our algorithm �rst determines stable and unstable equilibria of the parts, which correspond to

the negative and positive steps in the turn function, respectively (see Lemma 6). The turn function

can be obtained as the sign of the moment function, which, for polygonal parts, is a piecewise

rational function, and can be derived automatically from the part geometry. For example, consider

the rectangle R in Figure 13: A line l through the origin bisects R. If l is placed such that it

6Parallel-jaw gripper symmetry is also modulo �. Push-squeeze grasps, however, exhibit symmetry modulo 2�.
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a10 a20 a30

R10 R20 R30 b

Figure 12: Sample rectangles R10, R20, and R30. Edge a is 10, 20, and 30% longer than edge b,

respectively.

l

a=2

R

c1

c2

x

y

(a=2; �)

b=2

c0

�

Figure 13: Analytically determining the moment function for a rectangular part R with sides of

length a and b. c0 is the center of mass of the segment below the x-axis. c1 and c2 are the centers

of the triangular segments between x-axis and line l.

intersects the right edge of R at (a=2; �) with �b=2 � � � b=2, then the COM of the segment below

l is

c
�

=

�
ab

2
c0 +

a�

4
(c1 � c2)

�
2

ab

= c0 +
�

2b
2c1

= (
a�

3b
;�

b

4
+
�2

3b
)

The moment function is the inner product between the vector c
�
, and the direction of the line

l. For balanced moment, this product must be zero, which gives us the following condition for

equilibrium:

0 = (
a�

3b
;�

b

4
+
�2

3b
) � (

a

2
; �)
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Figure 14: Stable (dark) and unstable (white) equilibria of three rectangular parts in a unit squeeze

�eld with vertical squeeze line: (a) R10, edge ratio 1.1; (b) R20, edge ratio 1.2; (c) R30, edge ratio

1.3. R10 and R20 exhibit two stable equilibria, R30 exhibits only one.

Table 1: Equilibria of rectangular parts R10, R20, and R30 in a unit squeeze �eld with vertical

squeeze line.

Part Equilibrium orientations �

stable unstable

R10 0:97; 2:18; 4:11; 5:32 0; �=2; �; 3�=2

R20 1:29; 1:85; 4:43; 4:99 0; �=2; �; 3=pi=2

R30 �=2; 3�=2 0; �

=
a2�

6b
�
b�

4
+
�3

3b

=
�

12b
(2a2 � 3b2 + 4�2)

So � = 0

or � = �
1

2

p
3b2 � 2a2

= �
b

2

p
3� 2c2 for a = cb

This means that for rectangles with edge ratio c �
p
3=2 � 1:22 (such as R10 and R20), there exist

equilibrium orientations at angles � = arctan(�
p
3=c2 � 2). For rectangles with larger edge ratio

c (such as R30), an equilibrium exists only at � = 0. A similar analysis can be performed for all

other placements of the line l, see [7] for more details. Equilibrium orientations as determined by

our planner are shown in Figure 14 and Table 1. Since all of our parts are symmetric with respect

to rotation by �, for the remainder of this example we will consider all angles modulo �.

From the equilibrium orientations in Table 1 the algorithm generates the squeeze function,

according to Lemma 7. Note that steps in the squeeze function occur at angles corresponding

to unstable equilibria, while the image of the squeeze function is the set of all stable equilibrium
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Figure 15: Moment function, turn function, and squeeze function for three rectangular parts: (a)

R10, edge ratio 1.1; (b) R20, edge ratio 1.2; (c) R30, edge ratio 1.3. R10 and R20 exhibit two stable

equilibria for � in the range [0 : : :�], R30 exhibits only one.

orientations (see Figure 15).

Finally, the squeeze function is used as input for Goldberg's planning algorithm [22], which

returns as output a sequence of squeeze angles. A sequence of two squeeze �elds, with a relative

angle of �=2, is su�cient to uniquely orient both R10 and R20. See Figure 16 for a sample execution

of this plan for two arbitrary initial poses. R30 requires only one squeeze �eld at an arbitrary angle.

It was shown in [7] that this algorithm can uniquely orient arbitrary polygons from any initial

con�guration (up to part symmetry). However, recall that for this algorithm to work we have

made several important assumptions that idealize the practical vibratory feeding devices presented

in Section 3.1.

1. 2Phase assumption, which states that translational and rotational motion of the part is

decoupled, implying that the turn function is independent of the initial o�set of the part

from the squeeze line; see also Section 5.4.

2. Depending on the part shape, the algorithm may generate alignment plans with unit squeeze

�elds at arbitrary angles. Due to mechanical design limitations, usually not all of these �elds

will be feasible to implement on most vibratory device setups.

3. The resulting plans uniquely orient a part, but the �nal translational position can not be

predicted.

In the remainder of this paper, we will investigate new manipulation strategies that address these

key issues. In particular, in Section 6 we will develop algorithms for devices with a limited \vocab-

ulary" of available force �elds, which will result in a \manipulation grammar" for unique, sensorless

posing strategies for arbitrary planar, polygonal parts.
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Step 1

# #

Step 2

Figure 16: Two-step alignment plan for rectangle R20. After two steps, R20 reaches a unique

orientation � independent of its initial pose. However, the position (x; y) is not unique.

5.4 Relaxing the 2Phase Assumption

In Section 5.2, assumption 2Phase allowed us to determine successive equilibrium positions in a

sequence of squeezes, by a quasi-static analysis that decouples translational and rotational motion

of the moving part. For any part, this obtains a unique orientation equilibrium (after several steps).

If 2Phase is relaxed, we obtain a dynamic manipulation problem, in which we must determine the

equilibria (x; �) given by the part orientation � and the o�set x of its center of mass from the

squeeze line. A stable equilibrium is a (x
i
; �

i
) pair in R�S1 that acts as an attractor (the x o�set

in an equilibrium is usually not 0). Again, we can compute these (x
i
; �

i
) equilibrium pairs exactly,

as outlined in Section 5.1.

Considering (x
i
; �

i
) equilibrium pairs has another advantage. We can show that, even without

2Phase, after two successive, orthogonal squeezes, the set of stable poses of any part can be reduced

from C = R
2
� S

1 to a �nite subset of C (the con�guration space of part P ); see Claim 11 (Sec-

tion 6.1). Subsequent squeezes will preserve the �niteness of the state space. This will signi�cantly

reduce the complexity of a task-level motion planner. Hence if assumption 2Phase is relaxed,

this idea still enables us to simplify the general motion planning problem (as formulated e.g. by

Lozano-P�erez, Mason, and Taylor in [28]) to that of Erdmann and Mason [19]. Conversely, relaxing

assumption 2Phase raises the complexity from the \linear" planning scheme of Goldberg [22] to

the forward-chaining searches of Erdmann and Mason [19], or Donald [15].
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Step 1

Step 2

Figure 17: Manipulation vocabulary for a triangular part on a vibrating plate, consisting of two

consecutive force �elds with slightly curved nodal lines (attractors) which bring the part into

(approximately) the same equilibria.

6 Manipulation Grammars

The development of devices that generate programmable vector �elds is still in its infancy. For

vibrating surfaces the �elds are constrained by the vibrational modes of the plate. We are interested

in the capabilities of such constrained systems. In this section we give an algorithm that decides

whether a part can be uniquely positioned using a given set of vector �elds, and it synthesizes an

optimal-length strategy if one exists. Furthermore, in Section 6, the vector �elds we consider may

be arbitrary, and in particular can vary in magnitude (as opposed to unit squeeze �elds). If we

think of these vector �elds as a vocabulary, we obtain a language of manipulation strategies. We

are interested in those expressions in the language that correspond to a strategy for uniquely posing

the part.

6.1 Finite Field Operators

We de�ne two basic operations on vector �elds. Consider two vector �elds f and g. f + g denotes

point-wise superposition, f � g denotes sequential execution of f , and then g.

De�nition 10 Let P be an arbitrary planar part. A �nite �eld operator is a sequence of vector

�elds that brings P from an arbitrary initial pose into a �nite set of equilibrium poses.

A �eld operator comes with the following guarantee: No matter where in R2 � S1 the part starts

o�, it will always come to rest in one of E di�erent total equilibria (Figure 17). That is: for any

polygonal part P , either of these �eld operators is always guaranteed to reduce P to a �nite set of

equilibria in its con�guration space C = R2 �S1.
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Claim 11 Let f and f? be unit squeeze �elds such that f? is orthogonal to f . Then the �elds

f � f? and f + f? induce a �nite number of equilibria on every connected polygon P , hence f � f?
and f + f? are �nite �eld operators.

Proof: First consider the �eld f � f?, and w.l.o.g. assume that f(x; y) = (�sign(x); 0). Also

assume that the COM of P is the reference point used to de�ne its con�guration space C = R2�S1.

As discussed in Sections 5.1 and 5.2, P will reach one of a �nite number of orientation equilibria

when placed in f or f?. More speci�cally, when P is placed in f , there exists a �nite set of

equilibria E
f
= f(x

i
; �

i
)g, where x

i
is the o�set from f 's squeeze line, and �

i
is the orientation

of P (see Section 5.4). Similarly for f?(x; y) = (0;�sign(y)), there exists a �nite set of equilibria

E
f?

= f(y
j
; �

j
)g. Since the x-component of f? is zero, the x-coordinate of the reference point of P

(the COM) remains constant while P is in f?. Hence P will �nally come to rest in a pose (x
k
; y

k
; �

k
),

where x
k
2 �1(Ef

), (y
k
; �

k
) 2 E

f?
, and �1 is the canonical projection such that �1(x; �) = x. Since

E
f
is �nite, so is �1(Ef

). E(f?) is also �nite, therefore there exists only a �nite number of such

total equilibrium poses for f � f?.

If P is placed into the �eld f+f? , there exists a unique translational equilibrium (x; y) for every

given, �xed orientation �. In each of these translational equilibria, the squeeze lines of f and f? are

both bisectors of P . Now consider the moment acting on P when P is in translational equilibrium

as a function of �. Since there are O(n2) topological placements for a single bisector, therefore there

exist also only O(n2) topological placements for two simultaneous, orthogonal bisectors. In analogy

to Proposition 4 in Section 5.1 we can show that for any topological placement of the bisectors,

this moment function has at most O(k) roots, where k is the maximum number of edges a bisector

of P can cross. This implies that there exist only O(k n2) distinct total equilibria for f + f?. 2

Corollary 12 Let f be a �nite �eld operator for a part P , and let g be an arbitrary vector �eld.

Then the sequence g � f is a �nite �eld operator.

Proof: By de�nition of a �nite �eld operator, f brings the part P into a �nite set of equilibrium

poses from arbitrary initial poses, in particular from the poses that are the result of �eld g. 2

Thus by pre-pending an arbitrary sequence of �elds to a �nite �eld operator, one can always

create a new �nite �eld operator (possibly with a smaller set of discrete equilibria). In the remainder

of this section, however, we will only consider �nite �eld operators of minimal length, i.e. �eld

sequences from which no �eld can be removed without losing the �niteness property (De�nition 10).

We have seen in Section 5 that for simple force �elds such as e.g. unit squeeze �elds, we can

predict the motion and the equilibria of a part with exact analytical methods. However, for arbitrary

�elds such algorithms are not known. Instead we can employ numerical methods to predict the

behavior of the part in the force �eld. These methods are typically numerical computations that

involve simulating the part from a speci�c initial pose, until it reaches equilibrium.7 We call the

cost for such a computation the simulation complexity s(n). We write s(n) because the simulation

complexity will usually depend on the complexity of the part, i.e., its number of vertices n (for

more details also see [17]).

7See for example URL http://www.cs.cornell.edu/home/karl/Cinema.
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Proposition 13 Consider a polygonal part P , and m �nite �eld operators fF
i
g, 1 � i � m,

each with at most E distinct equilibria in the con�guration space C for P . There is an algorithm

that generates an optimal-length strategy of the form F1 � F2 � � � � � Fl
to uniquely pose P up to

symmetries, if such a strategy exists. This algorithm runs in O(m2E (s(n)+2E)) time, where s(n)

is the simulation complexity of P in F
i
. If no such strategy exists, the algorithm will signal failure.

Proof: Construct a transition table T of size m2E that describes how the part P moves from an

equilibrium of F
i
to an equilibrium of F

j
. This table can be constructed either by a dynamic analysis

similar to Section 5.1, or by dynamic simulation. The time to construct this table is O(m2E s(n)),

where s(n) is the simulation complexity, which will typically depend on the complexity of the part.

Using the table T , we can search for a strategy as follows: De�ne the state of the system as

the set of possible equilibria a part is in, for a particular �nite �eld operator F
i
. There are O(E)

equilibria for each �nite �eld operator, hence there are O(m 2E) distinct states. For each state

there are m possible successor states as given by table T , and they can each be determined in

O(E) operations, which results in a graph with O(m 2E) nodes, O(m22E) edges, and O(m2E 2E)

operations for its construction. Finding a strategy, or deciding that it exists, then devolves to

�nding a path whose goal node is a state with a unique equilibrium. The total running time of this

algorithm is O(m2E (s(n) + 2E)). 2

Hence, as in [19], for any part we can decide whether a part can be uniquely posed using the

vocabulary of �eld operators fF
i
g but (a) the planning time is worst-case exponential and (b) we

do not know how to characterize the class of parts that can be oriented by a speci�c family of

operators fF
i
g. However, the resulting strategies are optimal in length.

This result illustrates a tradeo� between mechanical complexity (the dexterity and controlla-

bility of �eld elements) and planning complexity (the computational di�culty of synthesizing a

strategy). If one is willing to build a device capable of general squeeze �elds, then one reaps great

bene�ts in planning and execution speed. On the other hand, we can still plan for simpler devices

(see Figure 17), but the plan synthesis is more expensive, and we lose some completeness properties.

6.2 Example: Uniquely Posing Planar Parts with Squeeze Fields

In this section we will show how to accomplish tasks with manipulation grammars as developed

in Section 6.1. Recall from Section 5.2 that we say a manipulation strategy orients (respectively,

poses) a part uniquely if from any initial con�guration, the part can be brought into a unique �nal

orientation (respectively, pose). We will show how the synthesized plans uniquely pose parts from

any initial con�guration. As an example, suppose our vibratory plate feeder can generate only a

very limited vocabulary of four force vector �elds, which are also not exactly centered on the plate.

For simplicity we assume that the vocabulary consists of unit squeeze �elds with squeeze lines at

angles of 0, 90, 60 and 150 degrees. We call these �elds A, B, C, and D, respectively. The squeeze

line of �eld A is o�set by 2 units from the origin, the squeeze line of B is o�set by 3 units, and the

squeeze lines of C and D intersect at the origin (see Figure 18).

The sequence A �B is a �nite �eld operator, since the squeeze lines of A and B are orthogonal

(see Claim 11). In the remainder of this section, we will abbreviate \A�B" and simply write \AB".

Other �nite �eld operators besides AB are BA, CD, and DC, so that we obtain a vocabulary of

m = 4 operators.
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Figure 18: Manipulation vocabulary, consisting of 4 unit squeeze �elds.

Note that using unit squeeze �elds in this example is not essential; any �elds that yield �nite

sets of equilibria could be used as well. However, for this \didactic" example it is advantageous to

use unit squeeze �elds because (a) it is easy to determine equilibria for unit squeeze �elds, and (b)

we can compare the result obtained here with the manipulation plans generated by the planner in

Sections 5.2 and 5.3.

6.2.1 Uniquely Posing Rectangles

In this example we will attempt to generate plans for uniquely posing several rectangular parts

with the manipulation vocabulary A, B, C, and D (up to part symmetry). As in Section 5.3, we

consider three rectangles R10, R20, and R30 that have sides a and b such that a is 10, 20, and 30

percent longer than b, respectively (Figure 12). The stable equilibria of R10, R20, and R30 in a unit

squeeze �eld were shown in Table 1. Modulo part symmetry, each squeeze �eld induces only two

stable orientation equilibria for R10 and R20, and only one stable orientation for R30. Also note

that in stable equilibrium, the COM of a rectangle lies on the squeeze line. This gives us a total of

mE = 4 � 2 = 8 discrete equilibria for R10 and R20, when using the �nite �eld operators AB, BA,

CD, and DC. All equilibria are shown in Table 2 (compare with Table 1 and Figure 14). Finally,

any one of the operators AB, BA, CD, and DC uniquely orients R30, yielding trivial one-step

plans to uniquely pose R30. Hence we will omit R30 for the remainder of this example.

Given the discrete equilibria, the algorithm based on the constructive proof of Proposition 13

generates a transition table T that describes the mapping between initial equilibrium pose and

�nal equilibrium pose of a part when one �nite �eld operator is applied. This table has mE rows

and m columns. Table 3 shows the transitions for parts R10 and R20. Each entry in T can be

determined either by dynamic analysis, or by simulation. The values in Table 3 were generated

by our planner using simulation. Figure 19 shows a trace of such a simulation: The initial pose

of part R20 is equilibrium e3 = (3; 2; 2:86). In �eld C, R20 moves left and up until it reaches an
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Table 2: Stable equilibria of rectangular parts R10 and R20 for the manipulation vocabulary AB,

BA, CD, and DC.

Operator Equilibrium R10 R20

(x; y; �) (x; y; �)

AB 1 (3,2,0.97) (3,2,1.29)

2 (3,2,2.18) (3,2,1.85)

BA 3 (3,2,2.54) (3,2,2.86)

4 (3,2,0.61) (3,2,0.28)

CD 5 (0,0,2.01) (0,0,2.34)

6 (0,0,0.08) (0,0,2.90)

DC 7 (0,0,0.44) (0,0,0.77)

8 (0,0,1.65) (0,0,1.33)

equilibrium on the squeeze line of C. Subsequently, after �eld D is applied, R20 comes to rest in

equilibrium e6 = (0; 0; 2:90). In this case, using Claim 11, the equilibria (but not the transitions)

can be calculated analytically.

Recall from Section 6.1 that this system has a state space of size O(m 2E), because for each

of the m �nite �eld operators, there are O(E) discrete equilibria in which the part could be. For

example, a state could be \the part is in equilibrium 1, 2, or 4". We can represent such a state

as a binary string, \11010000". Hence the transition table T can be used to de�ne a transition

graph whose nodes are the O(m 2E) states, and whose O(m2E 2E) edges are derived from the mE

transitions in T . A simple breadth-�rst search of this graph, starting from the state in which all

equilibria are possible, will yield optimal-length plans to reach any reachable state.8 This algorithm

will also decide which states are unreachable. Hence it can signal success when the shortest plan to

reach a state with a unique equilibrium is found, or signal failure if no such plan exists. Figure 20

shows transition graphs for parts R10 and R20 with all reachable states, and the shortest paths to

reach them from the initial state, in which the part has an arbitrary pose. Notice that there exists

a two-step plan for uniquely posing R20, but no such plan exists for R10.

In summary, we observe that with our �nite �eld operators AB, BA, CD, and DC, R30 can be

uniquely posed in one step, R20 requires two steps, while there exists no strategy for R10. Recall

that the general squeeze algorithm in Section 5.3 found an alignment strategy for all three rectangles

R10, R20 as well as R30. However, the algorithm required two squeeze �elds at a relative angle of

approximately 45�; for R10, it would fail for squeeze lines at a relative angle of 60�. Apparently,

parts that are closer to rotational symmetry (i.e., in this case, closer to square-shaped) are more

di�cult to pose uniquely than more asymmetric (i.e., long rectangular-shaped) parts.

6.2.2 Uniquely Posing and Feeding Arbitrary Parts

In this section we will demonstrate the manipulation grammar algorithm for a more realistic part

(see Figure 21a), and for two di�erent manipulation vocabularies. All strategies in this section (and

Section 6.2.1) were computed using an automatic planner we implemented, using the techniques

8We could also imagine using A�-search to improve performance.
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Table 3: Transition table for equilibria of the rectangles R10 and R20, with �nite �eld operators

AB, BA, CD, and DC. For both rectangles, there exist a total of E = 8 equilibria, and m = 4

�nite �eld operators.

R10 R20

to to

AB BA CD DC AB BA CD DC

from AB 1 1 4 6 7 1 4 5 8

2 2 3 5 8 2 3 5 8

BA 3 2 3 5 8 2 3 6 7

4 1 4 6 7 1 4 6 7

CD 5 2 3 5 8 2 3 5 8

6 1 4 6 7 2 3 6 7

DC 7 1 4 6 7 1 4 6 7

8 2 3 5 8 1 4 5 8

of Section 6.1. We will �rst extend our manipulation grammar by adding a �eld F that has a

vertical squeeze line at x = �3 (Figure 22 left), which yields two new �nite �eld operators, AF

and FA. Analysis of the part shows that it has 4 stable orientation equilibria in a unit squeeze

�eld (Figure 21b). It is not di�cult to see that, after any two orthogonal squeezes, the part can

be in E = 8 di�erent poses. We obtain a transition table of size m2E = 228, which results in a

state transition graph with m 2E = 1536 nodes (states) and m22E = 9216 edges (transitions). The

algorithm �nds the following strategy: CD BA AF FA, which is equivalent to CDBAFA. Two

sample executions of this strategy are shown in Figure 23, from di�erent initial poses. A close look

at the strategy reveals that operator CD approximately centers the part, such that B can move the

part into one of four discrete orientation equilibria below the squeeze line of A. Then A reduces the

number of orientation equilibria to two, and F to one (at a unique x-position). Finally, A brings

the part into a unique pose: e� � (�2:9; 1:9; 3:6).

It is important to note the following distinction between the general squeeze strategies for parts

orienting of Section 5.2, and the manipulation grammar strategies: As mentioned in Section 5.2,

turn and squeeze functions render planning algorithms based upon them susceptible to �eld symme-

tries, thereby introducing aliasing in orientation space and admitting completeness and uniqueness

proofs of orientation only modulo �eld symmetry. Since manipulation grammars do not employ

turn or squeeze functions, they are immune to this problem, and parts without rotational symmetry

can be posed uniquely. In essence, turn and squeeze functions assume a global �eld symmetry. In

manipulation grammars, such �eld symmetries may not exist, e.g. squeeze �elds could have arbi-

trary angles and o�sets from the origin. In the �rst example of this section (Figure 23), the �nal

pose is indeed unique.

As a second example, we add the �eld G, which has a horizontal squeeze line at y = �2

(Figure 22 right), and remove the �elds C and D. This results in 8 �nite �eld operators, hence

we obtain m2E = 512 entries in the transition table, m 2E = 2048 states and m22E = 16384

transitions. We obtain the strategy GB BA AF FG, which is equivalent to GBAFG. During
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Figure 19: Simulation of part R20 from equilibrium 3 by using �nite �eld operator CD, reaching

equilibrium 6: (a) applying �eld C; (b) applying �eld D.

execution of this strategy, the COM of the part follows a counterclockwise rectangular path, at

each step reducing the number of possible equilibria, until, in the lower left corner, a unique pose is

reached (Figure 24). This opens the possibility of pipelining the posing process, which could yield

more e�cient parts feeders: as long as we can ensure that the next part is initially placed su�ciently

far to the right so not to interfere with its predecessor, the G �eld can be used simultaneously for

two parts. Hence if the parts feeder periodically cycles through the �elds GBAF , the next part

can be introduced into the device each time before G is executed. A part is uniquely posed after

each execution of G.

6.3 Summary

In this section we have de�ned manipulation grammars that consist of a vocabulary of planar

force vector �elds, and we presented an implemented planning algorithm that generates strategies

to uniquely position and orient parts. In comparison with the general squeeze strategies of Sec-

tion 5.2, manipulation grammars allow sets of arbitrary force vector �elds, and are not limited

to a 1-parameter family of squeeze �elds. Consequently, depending on the available manipulation

vocabulary, the resulting strategies can be more powerful or more restricted than the orienting

strategies generated by the general squeeze algorithm of Section 5.2. In particular, parts can be

uniquely posed even when only symmetric force �elds are available. As a tradeo�, planning and

execution complexity is worst-case exponential instead of merely quadratic in the number of equi-

libria of the part, and there exist no completeness guarantees that a strategy always exists for a

given vocabulary or class of parts. Moreover, numerical simulation was employed to predict the

transitions, whereas they may be exactly computed (Section 5.2) for simple squeezes.
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Figure 20: Minimum spanning trees of the state transition graphs for rectangles (a) R10, and (b)

R20. All reachable states are shown, as well as the shortest paths to reach each of them. Non-

spanning edges (e.g. an edge CD from 11000000 to 00001100) are omitted for simplicity.

(a) No state with unique equilibrium can be reached for R10.

(b) There exist several two-step plans for R20 that reach states with unique equilibrium. (Graphs

were generated automatically by our planner software.)
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Figure 21: Sample part: (a) nonconvex shape with holes; (b) its four stable equilibria in a unit

squeeze �eld.
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Figure 22: Extensions to the manipulation vocabulary, consisting of 2 unit squeeze �elds.
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Figure 23: Two sample executions of the manipulation grammar strategy CD BA AF FA. For

clarity, the simulation trace has been broken up into parts: initial pose (top), motion under CD

(middle), and motion under BA AF FA (bottom). Initial poses: (a) z0 = (2; 2;�0:5), (b) z0 =

(�4;�1; 2:5). Final pose e� � (�2:9; 1:9; 3:6).
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Figure 24: Two sample executions of strategy GB BA AF FG = GBAFG. For clarity, the

simulation trace has been broken up into parts: initial pose (top), motion under GB (middle), and

motion under AFG (bottom). Initial poses: (a) z0 = (1;�3;�0:5), (b) z0 = (4;�1; 2:5). Final

pose e� � (�2:9;�1:9; 5:9).
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7 Conclusions and Open Problems

Parts Sorting with Geometric Filters. This paper focuses mainly on sensorless manipulation

strategies for unique positioning of parts. Another important application of programmable vector

�elds are geometric �lters [3, 35], which would be useful for sorting and singulation of parts. Figure 1

shows a simple �lter that separates smaller and larger parts. We are interested in the question Given

n parts, does there exist a vector �eld that will separate them into speci�c equivalence classes? For

example, does there exist a �eld that moves small and large rectangles to the left, and triangles to

the right? In particular, it would be interesting to know whether for any two di�erent parts there

exists a sequence of force �elds that will separate them.

Resonance Properties. Preliminary experiments have indicated that by applying frequencies

close to the natural frequency of a part, the force �eld can be tuned very e�ectively. Is it possible

to exploit the dynamic resonance properties of parts to tune the control signal of the surface to

perform e�cient dynamic manipulation?

Output Sensitivity. We have seen in Sections 5.1 and 6 that the e�ciency of planning and

executing manipulation strategies critically depends on the number of equilibrium con�gurations.

Expressing the planning and execution complexity as a function of the number of equilibria E, rather

than the number of vertices n, is called output sensitive analysis. In practice, we have found that

there are almost no parts with more than two distinct (orientation) equilibria, even in squeeze �elds.

This is far less than the E = O(k n2) upper bound derived in Section 5.1. If this observation can be

supported by an exact or even statistical analysis of part shapes, it could lead to extremely good

expected bounds on plan length and planning time, even for the strategies employing manipulation

grammars (note that the complexity of the manipulation grammar algorithm in Proposition 13 is

output-sensitive).

Universal Feeder-Orienter (UFO) Devices. It was shown in Proposition 4 that every con-

nected polygonal part P with n vertices has a �nite number of stable orientation equilibria when

P is placed into a squeeze �eld S. Based on this property we were able to generate manipulation

strategies for unique part alignment. B�ohringer and Donald showed in [7] that by using a combined

radial and squeeze �eld R+ �S, the number of equilibria can be reduced to O(k n). Using elliptic

force �elds f(x; y) = (�x; �y) such that � 6= � and �; � 6= 0, this bound can be reduced to two [27].

An \inertial" squeeze �eld f(x; y) = (�sign(x)x2; 0) uniquely orients a part modulo �eld symmetry

�. In a stable equilibrium, the part's major principal axis of inertia lines up with the squeeze line

to minimize the second moment of inertia.

Does there exist a universal �eld that, for every part P , has only one unique equilibrium (up

to part symmetry)? Such a �eld could be used to build a universal parts feeder [1] that uniquely

positions a part without the need of a clock, sensors, or programming.

B�ohringer and Donald propose in [7] a combined radial and \gravitational" �eld R+ �G which

might have this property. � is a small positive constant, and G is de�ned as G(x; y) = (0;�1). This

device design is inspired by the \universal gripper" in [1]. Such a �eld could be obtained from an

array of MEMS (micro electro mechanical system) actuators [7]. Alternatively, a resonating speaker,

or a vibrating disk-shaped plate that is �xed at the center, might be used to create a radial force
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Figure 25: Particle bouncing on a vibrating string.

�eld. Extensive simulations show that for every part we have tried, one unique total equilibrium is

always obtained. We are working toward a rigorous proof of this experimental observation.

APPENDIX

A Particle Bouncing on a Vibrating String

To understand the e�ective forces on particles on a vibrating surface, we look at the more tractable

case of the planar motion of a particle bouncing on a string in transverse vibrations (Figure 25).

The string vibrates in the �rst mode, and is not a�ected by its interaction with the particle.

The shape of the string, at time t, for a given x location is:

y
s
= A sin x sin 2��t

where � is the frequency of oscillation. The position of the particle is given by (x
p
; y

p
).

The interaction between the particle and the string is through a sequence of impacts. We use

a model for particle impact with a �nite friction coe�cient �, and a coe�cient of restitution e. �

is the slope of the string at the point and instant of impact, and is small for small amplitudes of

string vibration.

tan � = A cos x sin 2��t

The motion of the particle can be simulated as a series of impacts with the string, with the

particle in free ight in-between. The change in the momentum of the particle during impact

is calculated using a simple planar impact model. Figure 26 shows the results of a numerical

simulation of the model at two di�erent values of e.

For a particle starting at rest, at t = 0, we �nd that _y
p
� _x

p
. Using the assumption that the

amplitude of oscillations is small, sin � � tan � ; cos � � 1. If ( _x�
p
; _y�

p
) represent the velocity just
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Figure 26: Simulation results showing the position of a particle moving on a vibrating string.

before impact, the velocity just after impact ( _x+
p
; _y+

p
), is:

_x+
p

= e ( _y�
p
� _y�

s
) sin � + � v�

relt
(3)

_y+
p

= _y�
s
(1 + e)� e _y�

p
(4)

where v�
relt

= ( _y�
p
� _y�

s
) sin � + _x�

p
is the relative velocity along the tangential direction before

impact, and � 2 [0; 1] is the dissipation factor that depends on �.

After the impact, _x+
p
is a sum of the relative tangential velocity before impact, attenuated by

friction; and a component from the impulse in the normal direction, which depends on e and the

slope of the string at the point of impact. The portion of x impulse added purely due to the e�ect

of the string can be approximated as �e _y
s
sin �, by setting _y�

p
= 0.

If this component of the impulse were spread uniformly over time, the e�ective force, Fe� , that

the particle would experience is:

Fe� / ��eA2 sin x cos 2��t cos x sin 2��t (5)

We now use the argument that it is more probable for the particle to impact the string at times

when the string is above the mean rest position, to show that over a large number of impacts,

the time dependent terms in equation (5) average out to a positive quantity. Therefore, the time

averaged e�ective force, Favg , experienced by the particle is:

Favg / ��eA2 sin 2x

This con�rms the intuition and the observed behavior that the particle moves faster at higher

amplitudes of string oscillation, coe�cient of restitution, and oscillation frequency. The sine de-

pendency of the force with x ensures that it points towards the corresponding nodes on either side

of the anti-node at x = �

2
.

Further experiments need to be done to study the e�ect of surface geometry and friction proper-

ties on the �nal part con�guration. The analysis can be further developed to determine the nodes
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and the vibration mode shape for a given plate setup, and the information used in conjunction

with the part geometry and surface property to predict the part behavior. We also propose an

extension of the experimental setup by adding software-controlled clamps to alter the node shapes

in a systematic manner. This will then be combined with automatic calibration of the setup by

determining nodes using edge detection, and a planner to automatically generate a plan to get a

given part in a desired orientation.
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