Gripper Contacts for Part Alignment

Tao Zhang, Student Member, |EEE, and Ken Goldberg, Senior Member, |IEEE

Abstract--For many industrial parts, their resting pose
differs from the orientation desired for assembly. It is
possible in many cases to compensate for this difference
using a paralleljaw gripper with fixed orientation. The
idea is to arrange contact points on each gripper jaw so
that the part is aligned as it is grasped. We analyze the
mechanics of this alignment based on a combination of
toppling, jamming, accessibility, and form closure and
describe an O(n°+ n?K) algorithm for the design of such
gripper contacts, where n is number of edges of the

grasped part and K is the description size of the set of
placementsthat put the part in form closure.

Index Terms—Robot grasping, jaw design, part top-
pling, part feeding.

I. INTRODUCTION

Industrid parts on a flat worksurface will naturaly come to
res in one of several stable orientations [10], but it is often
necessary to rotate a pat into a different orientation for
assembly [7].

@ (b)

Fig. 1. Gripper jaw contacts align the part for assembly.

This paper proposes an  inexpensive (minimaist)
method for digning pats during grasping. As illugtrated in
Fig. 1, the part is initidly in stable orientation (8); it then is
rotated by the gripper to orientation (b) for assembly onto
the peg.

We achieve this uing a smple pardld-jav gripper
with four contects as shown in Fig. 2. Firs, toppling contact
A and pushing contact A" make contact with the part and
topple it from the initid sable orientation to the desired
orientation. This phase is referred to as toppling. Then, as
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soon as the part reaches the desired orientation, left fixtur-
ing contact B' and right fixturing contact B make contact
with the part, stop its rotation, and securely grasp it. This
phese is referred to as grasping. Note that the pivot point,
P, maintains contact with the work-surface at dl times.

gripper

da
ds

Fig. 2. Aand A’ topple the part until B and B’ combineto produceaform-
closure grasp.

These four contacts and the pardld-jaw gripper are &
sgned to be easily reconfigurable to handle different indus-
trial parts, and low in cogt, footprint and weight.

Il. RELATED WORK

Although grippers has been widdy used for automated
manufacturing, assembly, and packing, the design of grip-
per jaws is usudly adhoc and remans a mgor limiting
factors in robot application. Proper gripper design can sim-
plify the overall assembly, increase the overall systemreli-
ability, aswell as decrease the implementation cost [7].

There is a subgtantid body of research on robotic
grasping; Bicchi and Kumar provide a concise recent sur-
vey in[3].

Most work andyses final datic grasp configuration.
There ae a number of 3D theoreticd modds based on
wrench theory. 15 et al. [15] prove, by infinitesma pertur-
bation andysis, tha four (seven) hard fingers are necessary
and aufficient to achieve form closure of a 2D(3D) object in
the absence of friction. Trinkle [25] presents a quantitative
test for formclosure gragps in term of linear programming.
Ponce et al. [18] address the problem of stable grasps of 3D
pats and deive necessty and sufficient conditions for
equilibium  and  forceclosure. Rimon and  Burdick  [20]
provide a good sunmay and extend this work with the
notion of 2" order immobility. There is dso an extensive
body of datic andyss of parts in the horizonta plane. Liu
[12] presents an O(n*"?) dgorithm to compute &l n-finger
form-closure gragps on a polygond object. Van der Stappen



et al. [22] propose a polynomia-time agorithm to compute
dl formclosure grasps on a polygona pat with a most
four fingers.

A number of papers consder pat motion in the hori-
zontd plane and how it can be used to reduce uncertainty.
The motion of pats during gragp acquistion is firg ana
lyzed by Mason [16], who studies push mechanics as a role
of passve compliance in grasping and manipulaion. Erd-
mann and Mason [8] explore the use of motion drategies to
reduce uncertainty in the location of objects. They describe
a sysematic agorithm for sensorless manipulation to orient
parts using a tilting tray. Brost [5] applies Mason's Rule to
andyze the mechanics of the padld-jav gripper and po-
lygona parts. He shows that it is possble to dign pats
usng passve pushes and squeeze mechanics. Goldberg [9]
demongrates that a modified parale-jawv gripper can orient
polygons up to symmetry by a sequence of norma pushes.
Akdla et al. [2] sudy a minimaist manipulaion method to
feed planar pats usng a onejoint robot over a conveyor
belt.

Severa authors address motion of parts in the vertica
(gravitationdl) plane during grasping. Trinkle et al. [23][24]
show how to dign parts in the gravitationa plane by lifting
them off work-surface using a planar gripper with two piv-
oting jaws. The preliftoff phase andyss of their paper is
rdated to our toppling anaysis. They generate liftability
regions corresponding to possble contacts for the forth
finger where causes the object b: dide, jam, bresk either of
two contacts with the surface, or bresk both contacts with
the surface. One important difference is tha we focus on
how jaw contacts can be designed to dign parts using only
trandationd motion. Abdl and Erdmann [1] sudy how a
planar polygon can be rotated while stably supported by
two frictionless contacts. Zumd and Erdmaenn [32][33] ana
lyze nonprehensle manipulation usng two pams jointed a
a centrd hinge. Erdmann [9] dso describes the nonprehen-
sle manipulaion in teem of C-gpace, and developed a
graphrsearching adgorithm for a sensorless gpproach of part
orienting. Rao et al[19] give a plana andyss for picking
up polyhedral parts using 2 hard-point contacts with a piv-
oting bearing, dlowing the pat to pivot under gravity to
rotae into a new configuraion. Blind et al. [4] present a
“Pachinko’-like device to orient polygond parts in the ver-
tica plane. It condsts of a grid of retractable pins that are
programmed to bring the part to a desred orientation as the
part falls through.

Causey and Quinn [7] propose guiddines for the de
sgn of grippers in manufacturing including: gragp parts
securdly; include functiondity in gripper fingers  (jaws);
fingers (jaws) should dign grasped parts, design for proper
gripper-part interaction. This paper provides a new dgo-
rithm to address these criteria

Wadlack and Canny [26] devdop an dgorithm for
planning planar grasp configurations usng a modular vise.
Brown and Brogt [6] turn the vise upsde down and invent a
modular pardle-jaw gripper. Each jaw condsts of a regular
grid of precisely postioned holes By properly locating
(insarting) four pins on each grid, the object can be grasped
rdiably a the desred orientation. They give an efficient
dgorithm for computing optimal positions for pins depend-

ing on a planar fixture modd and additiond 3-D geometry
andysis. Kaneko et al. [11] derive a sufficient condition for
gragping and manipulating parts with multiple contacts.
Song et al. [21] provide generd framework to dynamicaly
simulate multiple contact menipulation.

Our work is aso motivated by recent research in top-
pling manipulation. Zhang and Gupta [28] study how parts
can be reoriented as they fal down a series of steps. The
authors derive the condition for toppling over a step and
defined the trandtion height, which is the minimum sep
height to topple a part from a given dsable orientation to
another. Yu et al. [27] estimate the mass and the COM of
objects by toppling. Lynch [13] [14] derives sufficient me-
chanica conditions for toppling parts on a conveyor bdt in
term of condraints on contact friction, location, and motion.
In [29], we describe the toppling graph to represent the
mechanics and the geometry of toppling manipulation. In
this paper, we combine toppling mechanics with an andysis
of jamming, accesshility and formdosure in the gravita-
tiond plane. A preliminary report on this work appeared in
[31].

I1l. PROBLEM DEFINITION

Given 2D prgjection of an n-sded convex polyhedrd part,
how can we rotae the pat to a desred orientation and
graxpit securely?

The inputs of the problem are: the part’s center of mass
(COM), vertex cearance radius r, the upper bound of part-
surface friction coefficient Mg max, and the upper bound and
the lower bound of pat-gripper friction coefficient Mmax
and M min, respectively.

The output of the agorithm is the height of each of the
four contacts, da, da, dg, and dg, as wdl as the rdative x
offsst between contects on each jaw, Xag, Xap (See Fg. 2).
This s¢ of varigbles determines the gripper contacts that
will rotate the part to the desired orientation.

toppling
friction cone

pushing
friction
cone

da

P surface X
friction cone

Fig. 3. Notation.

During toppling, only A and A’ make contact with the
pat, and rotate it counterclockwise without causing P to
lose contact with the surface. Fig. 3 shows the notation used
in the toppling analyss. The part sits on a flat work-surface
a a dable orientaion. We define a frame origingting a P



with X-axis on the surface pointing right and Z-axis point-
ing up. Theframeis not stationery, but moveswith P.

Consider the part a its initid orientation, the COM is a
digance r from P and an angle h from the +X direction.
Sating from the pivot, we consider each edge of the part in
counter-clockwise order, namdy e;, e, ..., €, The edge €,
with vertices v; at (xj, z) and Vi+1 a (Xi+1, Z+1), iSin direction
yi from the +X axis. Let w; be the disance dong edge ¢ as
shown in Fg. 3. Any point on e can be expressed as & + w;
cosyi, z +W; siny;).

Let g denote the rotation angle of the part from the +X
direction. Initidly q = 0; q =¢y a the desired orientation.
We sy an edge e is visible if it can be seen from +X drec-
tion; invisible, otherwise. Therefore, e is visible if 0 < yy
+g< p; e is invisible if p< yx +g< 2p. Notice that A can
only meke contect with vishble edges and A" with hvighle
edges.

We assume that the part and the gripper are rigid, and
dso that the part's geometry, the location of the COM, and
the podtion of the jaws are known exactly. We dso assume
that A and A' make contact with the part smultaneoudy,
the part keeps contact with the surface, and the motion of
the pat and is dow enough that we can ignore inettid ef-
fects.

IV. TOPPLING ANALYSIS

We divide the toppling phase into two sub-phases ralling
and sdtling, where the COM is to the right/left of A,

spectively.

Fig. 4. Rolling conditions (p > wtq> p/2).

As shown in Fg. 4, we assume tha A’ makes contact
with the invisble edge next to P during the entire part
dignment process. Similar technique may be gpplied to
other situations (see[30] for details).

Let wdenotes the interior angle of the part & P, and let
g denote the criticd rotation angle where the COM is right
above A'; therefore,

da tan(g+w=r cosh+q). @

Our andysis involves the graphica condruction of a
st of shape functions that represent the mechanics of this
dignment. All of these functions are dependat on g ad
map from part orientation to height: S'® A*, where S isthe
st of planar orientations.

The toppling graph is a combingion of some shape
functions including the radius function, the vertex function,
the rolling function, and the jamming function. In this paper
we congder only the range of angles corresponding to rota
tion from one stable orientation (q= 0) tothe next (= q},).

The radius function, R(Q), is the height of the COM as
the part is rotated. The locd minima of the radius function
indicate the gable orientations of the part. The vertex func-
tion, Vi(Qg), gives the height of vertex i as the part rotates.
Each vertex of the pat has a vertex function. Using the
vetex functions we can determine which edge the contact
makes contact with. Given dp, the range of friction coeffi-
cients, and A in contact with edge &, the rolling function,
Hi(g), is the minimum height of A guarantee to rall the part
ingtantaneoudy. Hi(Q) is determined on the range q= 0 ~g.
Given dp, the range of friction coefficients, and A in con-
tact with edge e, the jamming function, Ji(g), is the mini-
mum height of A to guarantee no jamming.

The combination of these functions forms the toppling
graph. Given da, we can identify da that guarantees to top-
ple the part using toppling graph.

First, we consder part-surface and part-gripper friction
codffidents are single vaued g and my respectively. The
surface friction cone hdf-angleis ag = tan'ng and the push-
ingtoppling friction cone hdf-ange is & = tan*mp Then,
wefind Hi(g) and J;(q) over the givenrange of ngand m

A. Rolling Function

During ralling, the part rotates about P, P dides to the
right, and the part dips relative to the contacts. The system
of forces on the part: the contact force a the surface, the
contact force at the contacts, and the pat's weight, must
generate a podtive moment on the part with respect to P.
The contact force & P is dong the left edge of the surface
friction cone. But the direction of the contact force & A’
depends on angle (W+ Q).

Consder the case where p > wq > p/2. Rotation
causes the contact between the pat and A’ to move away
from P. Thus the contact force a A’ is dong the left edge of
the pushing friction cone.

Following the graphicd method of Mason [17], we le
gin by congructing a triangle BP,P, as shown in kg. 4. B
is at &po, Zy0), Which is the intersection of the left edge of
the surface friction cone and the left edge of the pushing
friction cone. Py is at §p1, Z1), which is the intersection of
the verticd line through the COM and the left edge of the
surface friction cone. B is at g2, Zy2), Which is the intersec-
tion of the vertica line through the COM and the left edge
of the pushing friction cone. Thus, we have:

X0 =t— PR sna, (@)
Zy = - t/ma+ PP, 03, (©)
Xpl = t! (4)



Zpn=-tng ®)

Xp2:t! (6)
d, Lt

Zp= _tan (7)
tanf +a,)

where t=r cogh+q),j =wq ad (8)

(2,, +—)sing +a,)

PP = m : ©)
ot sinj +a, - a,)

The locations of B, P, and B are dl the function of q
As qincrease, R shrink to P dong PR, PP, Sweeps coun-
terclockwise, and P, moves up while pp, keeps pardld to
Z-axis. Triangle BP,P, exigs if and only if w+q+&a < p
ie g <p-wa.

Toppling is guaranteed if every force in the toppling
friction cone makes a postive moment about every point in
the PyP,P, triangle. For dl forces in the toppling friction
cone to generate a postive moment about the triangle, the
left edge of the friction cone must pass above the triangle
dl other vectors in the friction cone will pass higher. We
denote the vector a the left edge of the toppling friction
cone as f; and the right edge as f. We find the height suffi-
cient to roll the edge by projecting lines from B, P, and B
a the angle of f; until they intersect the edge. The intersec-
tion with the maximum height of those three is the mini-
mum height sufficient to roll the part.

Let ow; denote the toppling contact on edge e where §
passes exactly through point P.. Let X; and Z dencte the
location of vertex v; after conducting pure rotation of q i.e,
Xi =% cosq- z sngad Z = x; Sng+ z cosg We can show
through geometric construction that:

SW; (q) = Zi - sz - (Xi - sz)tangl (10)
cosx tang, - sinx

wherex; =q+yjandg =y + p2+ a+q

Smilaly, the toppling contacts for f; passing through
Py and P, are given by ow;(0) and ;w;(Q).

The rolling function, Hi(g), is based on wi(g) that is
max ew;(9), ow;(Q), 1wi(Q) in the ralling region 0 < Q< g.
wi(Q) can beshown to be

w,  0<qg<q,andy; <w
oW 0<q<g,andy w: ()
¥ otherwise

where ¢, = min (¢, p -wW -&). Thus, the rolling function
within0< g< g isgiven by:

H(g= |H@ V@EH @, (12
Y V@ >H/(9)
whereH;" (0) = Z; + w; sinx;. (13)

Following the same methodology, we find H;(Q) under
the condition p/2 >wt+ g> 0.

Fig. 5 illugrates function R(g), Ho* (Q), Va(g) and V3(Q)
for the part in Fig. 3 with & = 5, a; = 10° and da = 9mm.
The kink (g =37°) of R(Q) represents the orientation where
e is on the surface. At a certain angle g any A a height h
will instantaneoudy rotate the part if max(H.(g),V2(Q) < h
< V5(g). The graph indicates that A can roll the part a any
contact on e; when 0 < q < 20°.

V3

37 G
Rotation angle ()

Fig. 5. R(9) vs. H2' (9, Va(0) and Vs(g).

B. Jamming Function

We dlow the part continue to rotate after it reaches g
if gy > . We cdl this process settling and intend to avoid
jamming in settling.

Fig. 6. Jamming conditions.

To determine the jamming function we begin by con-
dructing a primary region as shown in Fig. 6. The primary
region is quadrilaerd PoPiPoPs. Py is at Ko, Zpo), Which is
the intersection of the vertica line through the pat’'s COM



and the right edge of the pushing friction cone. P, is the
pushing contact a &1, Z1). B iS at Kp2, Z:2), which is the
intersection of the left edge of the pushing friction cone and
the left edge of the surface friction cone. R is at (pa, Za3).
which is the intersection of the verticd line through the
part’'s COM and the left edge of the surface friction cone.

Thus, we have:

XpO = t, ) (14)
Z0= g, - Jutdl -t (15)
tan@,-j )

Xpl = dA’ ta’lj s (16)

Zp1 = da, _ 1)

Xop = dycosa sna, (18)
sinj sinf +a - a,)

Zy= dy cosa cosa, (19
sinj sin§ +a; - a,)

Xp3 = t, (20)

Zyz=-tim (21)

To guarantee tha no jamming occurs, any force in the
toppling friction cone must not meke a negative moment
about the primary region; therefore f; determines the mini-
mal height & which jamming may occur.

Smilar to the andyss of the rolling function, we ob-
tan owi(9), owi(d), and 1wi(Q. When q > p -w-a+as,
Quadrilaterd PyP,P,P; doesn't exigt and w;i(Q) is ¥. When q
<p-w-actas, wi(9) is min(wi(a), owi(d), 1wi(q) and can be
shown to be:

ToW Yy, <w-2a andq <q<o,
W, :{ W w- 28, £y, £wandq<q,, 22)
i : ,W, w<y, andq<q,
faw o £afqq
where g, =p-a,-y;. =9

Thejamming function, J;(Q), with g < g< ¢, isgiven by:

Ji(Q) = } Ji* (q) V| (q) £ ‘Ji* (CI) . (24)
10 V@ >J@

whereJ;' (g) = Z + w; sinx;. (25)

Therefore, for given q and da, janming is guaranteed
not to occur if A makes contact with edge € and dj is higher
than J;(9).

C. Critical Friction Coefficients

We asume sngle vaued friction coefficients in the
lagt section. Given the range of the friction coefficients,
how can we deive the ralling function and the jamming
function?

As an example illustrated in Fig. 7, a part is initidly a
the dable orientation (a) and needed to be rotated 25° to
find orientation (b) for assembly. The part is defined by the

vertices a (0,0), (51.2, 0), (64.1, 57.2), (375, 96.2), (-32.2,
44.6), and COM a (21.9, 42.3). Unitismm.

@
25°
@ (b)

Fig. 7. An example: part alignment.

Therefore, the shape functions are the functions of q
and the friction coefficients. Fig. 8 shows gws as the func-
tion of & and qgivend, =5mmand &, = 10°.

200f;

Fig. 8. ow asthe function of & and g

We amplify the problem by decomposing the functions
into dngle variable functions. We firs condder the func-
tions a each rotation angle q and derive the conditions for
ma Then, given ngand g, we find the condition for m

We condder the functions a each g For each par ofm
and m in the given range the raling function or jamming
function is a single vdue. The maximum of these vaues is
the vadue of Hi(g or Ji(Q a the given gwhich corresponds
to a certain pair of critical friction coefficients in the given
range, denoted by ngf and et .

We firg condgder the ralling function. As illugtrated in
Hg. 4, Pp moves up dong pp, @ g decreases. Then, the
PoP1 P, triangle shrinks, and ow; decreases while w; keeps
unchanged. Therefore H;(Q) is guaranteed no increment as
m decreases. It is sufficient to consider only the upper
bounds of g i.e. Nel = N max, to get Hi(9).

Given ngf and q, the ralling function is a function of
i.e, Hi(rp. P, moves down dong pp, a M decresses
Therefore, ow; decreases and et = Mmax for y; < wi(where
w; is determined by ,w;). But R moves up aong ﬁ a m
decreases, S0 we need to determine gt for y; >wi(where w;



is determined by ow;). We apply numerica search the range
of mafor maximd w;, which correspondsto nt and H; (ng).

Given dy = 5mm, gk = 0.17 and g =20°, Fig. 9 shows
ws for the part as a function of &. ,ws and gws are discon-
tinuous & & 1 = 06l and & » = 0.78 respectively because
of non-exigence of primary region PoP;P,. As addressed in
last section, we only need to condder Hi(rny) when & < & 1,
i.e, & < p-q-wwhere w; isdetamined by ;ws.

A

2W3

>
0.2 0.4 0.4 0.8 1 12

-50 ! ’

Fig. 9. w asthe function of a.

We then condder the jamming function given the range
of lmand m As illustrated in Fig. 6, F; moves up dong PP,
ad P, moves up dong PP, as g decreases. Therefore
quedrilateral PoP1P,P; expands and Ji(Q) is guaranteed no
increment as M decreases. It is sufficient to condider only
the upper bound of g i.e. NEF = M max, to get Ji(9). As m
decresses, P, moves down dong pp, and Py moves down
dong @. Therefore, quadrilaterd PP P.P; expands and

Ji(9) is guaranteed no increment & M decreeses It s
aufficient to consder only the upper bound of g i.e nt =
M max; to get Ji(o)-

In summary, we find Hj(g) and Ji(g) over the range of
mand mby figuring out the functions & each q based upon
gt and ret, where g = M may for both functions and et =
Mmax for Ji(0). We deive ngt for Hi(g by numerice
method.

D. Toppling Graph

Fig. 10 illugtrates the toppling graph that combines the
vetex function, the rolling function, and the jamming func-
tion for the vishle edges. All the rolling functions and the
jamming functions correspond to ngf and it a each g
From the toppling graph, da can be determined or shown to
be nonexistent. Note that Hj(Q) must be bounded by the
Vi(g) and Vi 1(g) and istruncated where it intersectsthem.

Vs

height

Rotation angle (q)

Fig. 10. Toppling graph.

For toppling to be successful there must exist a hori-
zontd line from the angle of the initid orientation to the
angle of the dedred orientation at height h that has the fol-
lowing characteridics.

1:h>Hi(9), if Vi(g) <h < Via1(0);
2:h>3(9), if Vi(d) < h < Vi1 (9

3 h<max (Vi(9).ifg < q.

wherei istheindex for the visible edges.

The firg two criteria can be described as A must be
above both the rolling function and the jamming function of
the edge that A makes contact with. When the horizonta
line crosses a vertex function, A switches the contact to a
new edge and must then be above the ralling function and
the jamming function for that edge. The third criterion is
that the pin must not lose contact with the part by passing
over it during the rolling phase.

Fig. 10 demongtrates the toppling graph of the pat
shown in Fig. 3. From the graph we can determine the top-
pling contact & da = 2cm is capable to topple the part to
any orientation with 0 < g< qg. Notice that A switches con-

tact edgefrome, to g, a .

V. GRASPING

Once the part has been rotated to ¢y, the fixturing contacts,
B and B, must stop the part rotation and securdly grasp it.
We additiondlly require thet the combination of the contacts
corresponding to A, A, B, and B’ generate a form-closure
grasp on the pat. There ds0 exits an accesshility con-
graint on the locations of B and B’ due to the requirement
that they do not block the part's motion trgectory. There-
fore, we divide the grasing andysis into two sections on
the accesshility and the formrclosure requirement, respec-
tively.

A. Accessibility
The accessibility constraint requires that, as the part o
tates, it moves out towards the fixturing contects and a no
previous angle has it been touched with the contacts. The
accessihility congtraint will limit the possble heights of B
and B’ for given da andda.
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Fig. 11. Rotation of a part relative to the toppling contact A.

In order to determine the accesshility congraint we
must consder the relative motion between the part and the
gripper. Fig. 11 shows the rotation of a part with respect to
A. Note that a any height within the inaccessble range on
edge e, (a find orientation), vertex vz would have con-
tacted B before the part reached the desired orientation.

e, final
|orienta1i0n

£

vertex

/ trajectory

e,, find
orientation

curve separating
proceeding from
receding of edge

&, initial
orientation

Fig. 12. A portion of the edge in the desired orientation may be blocked in
the positive X direction before the part reaches the final orientation. Addi-
tionally, a curve shows the separation between where the part is moving
forward and where it is receding.

By examining an edge more closdy as shown in FHg.
12, dl the points below some criticd height a& ¢ denoted
hg, will move out to the part while those above will recede.
Therefore, the accesshility congraint requires dg £ hg on a
given edge & each g Let By denote a visible point on the
part a the height dg for a given angle g Note that By is a
different physicd point for each g The rdaive X distance
between A and B, can be shown geometricelly to be:

d.- Z -Z
X=X, X+t S 2, @)
tanx  tanx

where i and | are the indexes of the edges in contact with A
and B respectively. Therefore the derivetive of xg with e
spect to gisgiven by:

oy - X, G-,

I_Y_
dq

oYy, G X Y )
tanx  sn°Xx

)
taan SN X

Setting (30) equal to 0 and solving for dg yields:

) : . (3D

For a given edge, only heights less than hy can be con-
Sdered to locate B. A similar procedure is used to deta-
minearange of possible dg: for agivenda:.

B. Form-Closure

At the end of the accesshility considerations we know
da and dp, as wel as ranges of possble vdues for dg and
dg. From these ranges we must determine dg and dg: such
that the four contacts generate form-closure on the part.
Van da Stgpen’s dgorithm [22] gives dl placements of
point contacts the put a polygona pat in form closure
Therefore, we only need to compare the possible vaues of
da, da, dg and dg with the results of Van der Steppen’s &
gorithm. The overlgpping areas represent the location of
four contacts we look for.

VI. ALGORITHM

We devdop a polynomid-time numericd dgorithm to
solve the problem. An asymptotic upper bound of its run-
ning time can be derived asfollows.

Given an n-dded polygond pat, there are O(n) invisi-
ble edges a the initid orientation of the pat. We sample
theinvisble edgesto obtain d,:.

For each of da, we congruct the corresponding top-
pling graph. Since it takes O(1) time to compute each shape
function for a vishle edge and there are O(n) visble edges
in a graph, the running time to obtain a toppling graph is
O(n). The toppling graph dlows us to identify the feasible
range of dp such that the pair of da, da’) can rotate the part
to the desred orientation. Therefore, the tota running time
it takesto find apair of feasible (da, da’) isO(N?).

Given a par of feesble (da, da), we apply O(n) time
accessibility analysis to avoid the inaccessble segments for
dg and dg. So it takes time O(n®) to find a set of four possi-
ble contacts, and there are O(n?) such sets.

Van der Stappen’s dgorithm runs in O(n®"+K) time
for formclosure, where K is the description size of the re-
aulting st of placements and e is an abitraily smal con-
gant. For each set of four possible contacts, it takes O(K)
time to check itsform-closure property.

It is essy to see that this numerica agorithm takes
O(n***+K) + O(n?) (On3 + O(K)) = O(n*+ n’K) time. K is
bounded by O(n*), but in most of cases it remains well k&
low the upper bound. We are currently working to identify
properties of the graphs that will alow us to give a com
plete dgorithm to compute the optima jaw shape.



VIl. IMPLEMENTATION

We veify our jaw desgn dgorithms by the example in Fg.
7. FHg. 13 illugrates one of many solutions by the dgo-
rithm, where A at (593, 9561), A’ a (-6.17, 455), B at
(42.05, 31.83), and B’ at (-21.53, 78.02).

A
Fig. 13. A resulting jaw design to align the part in gray.

We dso conducted a physicd experiment usng an
AdeptOne industrid robot and a pardld-jav gripper with
jaw contacts designed by the methodology described in this
paper. The pat we used is a sndl lever from a standard
videotape (FUJ serid number: 7410161160). Its planar
convex hull is shown in Fg. 3. This pat dignment is re-
dricted in the X-Z plane due to the mechanicd and the
geometric property of the part.

Fig. 14. Part aligning experiment.

Fig. 14 illugraes the successful experiment. The
dignment process is showed in sequence 1~5. The pat fe
gins a dable orientation in (1). Its desired orientation for
insertion is (5) where q =37°. Wechoose Aand A’ a da =
9mm ad da = 20mm, respectivdly. The corresponding
friction cone hdf angles ae & = 0 ~ 5 and &, = 0 ~ 10°.
When q< 37°, Pis v; and X, =41mm, z, = 0mm, y, = 56°,
h =46° r =22mm, and w= 53°; When > 37°, Pis vg ad
X2 = 46mm, 2, = 24mm, Y, = 92°, h = 55°, r =27mm, and w
= 89%°. The andysis yields the following contact vaues. dg =
27mm, dg' = 30mm, Xag = 21mm, and Xa g = 1mm.

VIIl. DISCUSSION AND FUTURE WORK

In industrid practice, gripper jaw geometry is often custom+
desgned and machined for eech pat. Design hes been ad-
hoc and paticulaly chdlenging when the pats naturd
resing pose differs from the desred grip/insartion pose. In
this paper we describe a new agpproach to this problem
where 4 contact points on the jaws guide the part into
dignment and hold it securely.

The next step is to devedop more sophisticated jaw
shapes based on part trgectory and to address shape and
postion uncertainty, friction, and ultimately, 3D geometry.
We are ds0 interested in knowing under what conditions a
solution exigts.
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